• Title/Summary/Keyword: power spectral density functions

검색결과 48건 처리시간 0.02초

On effects of rail fastener failure on vehicle/track interactions

  • Xu, Lei;Gao, Jianmin;Zhai, Wanming
    • Structural Engineering and Mechanics
    • /
    • 제63권5호
    • /
    • pp.659-667
    • /
    • 2017
  • Rail support failure is inevitably subjected to track geometric deformations. Due to the randomness and evolvements of track irregularities, it is naturally a hard work to grasp the trajectories of dynamic responses of railway systems. This work studies the influence of rail fastener failure on dynamic behaviours of wheel/rail interactions and the railway tracks by jointly considering the effects of track random irregularities. The failure of rail fastener is simulated by setting the stiffness and damping of rail fasteners to be zeroes in the compiled vehicle-track coupled model. While track random irregularities will be transformed from the PSD functions using a developed probabilistic method. The novelty of this work lays on providing a method to completely reveal the possible responses of railway systems under jointly excitation of track random irregularities and rail support failure. The numerical results show that rail fastener failure has a great influence on both the wheel/rail interactions and the track vibrations if the number of rail fastener failure is over three. Besides, the full views of time-dependent amplitudes and probabilities of dynamic indices can be clearly presented against different failing status.

차량 출력 토크 측정 시스템의 시스템 식별 (System Identification of In-situ Vehicle Output Torque Measurement System)

  • 김기우
    • 한국자동차공학회논문집
    • /
    • 제20권2호
    • /
    • pp.85-89
    • /
    • 2012
  • This paper presents a study on the system identification of the in-situ output shaft torque measurement system using a non-contacting magneto-elastic torque transducer installed in a vehicle drivline. The frequency response (transfer) function (FRF) analysis is conducted to interpret the dynamic interaction between the output shaft torque and road side excitation due to the road roughness. In order to identify the frequency response function of vehicle driveline system, two power spectral density (PSD) functions of two random signals: the road roughness profile synthesized from the road roughness index equation and the stationary noise torque extracted from the original torque signal, are first estimated. System identification results show that the output torque signal can be affected by the dynamic characteristics of vehicle driveline systems, as well as the road roughness.

차량통행특성에 따른 도로교의 동적거동변화 (Dynamic Behaviors of Highway Bridges under Multi-Traffic Loads)

  • 김상효;이상호;윤성호
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 1997년도 봄 학술발표회 논문집
    • /
    • pp.185-191
    • /
    • 1997
  • The study presents the linear dynamic analysis of bridges under vehicular movement to examine the performance characteristics due to the various structural and loading conditions. The road surface roughness and bridge-vehicle interactions are considered. The road surface profiles for the approaching roadway and bridge decks are generated from power spectral density functions for different road roughness conditions. A new filtering method using the wheel trace is proposed to obtain the more rational bridge-vehicle interactions from the randomly generated road surface. The dynamic responses of various bridges designed according to current design practice are examined, in which important structural parameters(such as span length, girder spacing, etc.) are considering systematically. In addition, the traffic conditions of multi-truck traveling either consecutively on the same lane or side-by-side on the adjacent lanes are also evaluated.

  • PDF

Aerodynamic and hydrodynamic force simulation for the dynamics of double-pendulum articulated offshore tower

  • Zaheer, Mohd Moonis;Islam, Nazrul
    • Wind and Structures
    • /
    • 제32권4호
    • /
    • pp.341-354
    • /
    • 2021
  • Articulated towers are one of the class of compliant offshore structures that freely oscillates with wind and waves, as they are designed to have low natural frequency than ocean waves. The present study deals with the dynamic response of a double-pendulum articulated tower under hydrodynamic and aerodynamic loads. The wind field is simulated by two approaches, namely, single-point and multiple-point. Nonlinearities such as instantaneous tower orientation, variable added mass, fluctuating buoyancy, and geometrical nonlinearities are duly considered in the analysis. Hamilton's principle is used to derive the nonlinear equations of motion (EOM). The EOM is solved in the time domain by using the Wilson-θ method. The maximum, minimum, mean, and standard deviation and salient power spectral density functions (PSDF) of deck displacement, bending moment, and central hinge shear are drawn for high and moderate sea states. The outcome of the analyses shows that tower response under multiple-point wind-field simulation results in lower responses when compared to that of single-point simulation.

소형 송풍기 소음의 음향학적 상사성에 관한 연구 (Acoustical Similarity for Small Cooling Fans Revisited)

  • 김용철;진성훈;이승배
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 1995년도 춘계학술대회논문집; 전남대학교, 19 May 1995
    • /
    • pp.196-201
    • /
    • 1995
  • The broadband and discrete sources of sound in small cooling fans of propeller type and centrifugal type were investigated to understand the turbulent vortex structures from many bladed fans using ANSI test plenum for small air-moving devices (AMDs). The noise measurement method uses the plenum as a test apparatus to determine the acoustic source spectral density function at each operating conditions similar to real engineering applications based on acoustic similarity laws. The characteristics of fans including the head rise vs. volumetric flow rate performance were measured using a performance test facility. The sound power spectrum is decomposed into two non-dimensional functions: an acoustic source spectral distribution function F(St,.phi.) and an acoustic system response function G(He,.phi.) where St, He, and .phi. are the Strouhal number, the Helmholtz number, and the volumetric flow rate coefficient, respectively. The autospectra of radiated noise measurements for the fan operating at several volumetric flow rates,.phi., are analyzed using acoustical similarity. The rotating stall in the small propeller fan with a bell-mouth guided is mainly due to a leading edge separation. It creates a blockage in the passage and the reduction in the flow rate. The sound power levels with respect to the rotational speeds were measured to reveal the mechanisms of stall and/or surge for different loading conditions and geometries, for example, fans installed with a impinging plate. Lee and Meecham (1993) studied the effect of the large-scale motions like impinging normally on a flat plate using Large-Eddy Simulation(LES) and Lighthill's analogy.[ASME Winter Annual Meeting 1993, 93-WA/NCA-22]. The dipole and quadrupole sources in the fans tested are shown closely related to the vortex structures involved using cross-correlations of the hot-wire and microphone signals.

  • PDF

음향 하중에 의한 발사체의 응력해석에 관한 연구 (A Study on the Stress Analysis of Launch Vehicle due to Acoustic Loads)

  • 연정흠;윤성기;장영순;이영무
    • 한국항공우주학회지
    • /
    • 제31권8호
    • /
    • pp.91-98
    • /
    • 2003
  • 발사체의 구조해석적인 측면에서 외부하중에 따른 발사체의 반응을 파악하는 것은 중요한 일이다. 기본적으로 발사체는 응력집중이나 내부 모듈간의 변위 간섭 등이 일어나지 않게 설계되어야한다. 이를 위해서는 외부하중에 관한 연구가 선행되어야 한다. 발사체에 작용하는 외부하중 중 연소 및 배기에 의해 발생하는 음향하중은 통계적 방법으로 다루어야 하는 랜덤 하중이다. 본 연구에서는 발사시 작용하는 음향하중에 대하여 하중 함수를 구성하고, 이를 이용하여 발사체의 하중해석을 수행하였다. 음원 할당 방법으로 음향하중을 추정하여 하중함수를 구성하였고, 이를 발사체의 유한요소 모델에 적용하였다. 응력해석을 이용하여 발사체의 구조 강성을 확인할 수 있었으며, 발사체 각 섹션의 경계면에서의 가속도 파워 스펙트럴 밀도함수를 구할 수 있었다. 이러한 결과를 이용하여 각 섹션의 진동 시험에 필요한 스펙을 도출할 수 있다.

Assessment of capacity curves for transmission line towers under wind loading

  • Banik, S.S.;Hong, H.P.;Kopp, Gregory A.
    • Wind and Structures
    • /
    • 제13권1호
    • /
    • pp.1-20
    • /
    • 2010
  • The recommended factored design wind load effects for overhead lattice transmission line towers by codes and standards are evaluated based on the applicable wind load factor, gust response factor and design wind speed. The current factors and design wind speed were developed considering linear elastic responses and selected notional target safety levels. However, information on the nonlinear inelastic responses of such towers under extreme dynamic wind loading, and on the structural capacity curves of the towers in relation to the design capacities, is lacking. The knowledge and assessment of the capacity curve, and its relation to the design strength, is important to evaluate the integrity and reliability of these towers. Such an assessment was performed in the present study, using a nonlinear static pushover (NSP) analysis and incremental dynamic analysis (IDA), both of which are commonly used in earthquake engineering. For the IDA, temporal and spatially varying wind speeds are simulated based on power spectral density and coherence functions. Numerical results show that the structural capacity curves of the tower determined from the NSP analysis depend on the load pattern, and that the curves determined from the nonlinear static pushover analysis are similar to those obtained from IDA.

부트스트랩 기법을 이용한 소음진동 스펙트럼 분석법 소개 (A Bootstrap Method for Analysis of Noise & Vibration Spectrum)

  • 전영두;박종찬;정의승
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2008년도 춘계학술대회논문집
    • /
    • pp.185-188
    • /
    • 2008
  • This paper introduces the Bootstrap method for statistical analysis of noise and vibration spectrum in aeronautic and space fields. Generally, all components of a launch vehicle and its payloads are subjected to high intensive noise and vibration environment during the lift-off phase and the ascent phase through Mach =1 and Max Q. In order to verify their survivabilities against these severe vibroacoustic environments during qualification tests and acceptance tests, it is most important to estimate the proper upper limits of the environmental condition. Although NASA has typically utilized the Normal Tolerance Limit method in deriving these levels, the reference[1] says that the Bootstrap can be also an alternative method to estimate the maximum expected environments. In this paper, a general procedure of the Bootstrap method is summarized, and it is applied to analyze acceleration power spectral density functions, which were measured during acoustic test on the upper stage of KSLV-I.

  • PDF

Dynamic behaviour of high-sided road vehicles subject to a sudden crosswind gust

  • Xu, Y.L.;Guo, W.H.
    • Wind and Structures
    • /
    • 제6권5호
    • /
    • pp.325-346
    • /
    • 2003
  • High-sided road vehicles are susceptible to a sharp-edged crosswind gust, which may cause vehicle accidents such as overturning, excessive sideslip, or exaggerated rotation. This paper thus investigates the dynamic behaviour and possible accidents of high-sided road vehicles entering a sharp-edged crosswind gust with road surface roughness and vehicle suspension included. The high-sided road vehicle is modelled as a combination of several rigid bodies connected by a series of springs and dampers in both vertical and lateral directions. The random roughness of road surface is generated from power spectral density functions for various road conditions. The empirical formulae derived from wind tunnel test results are employed to determine aerodynamic forces and moments acting on the vehicle. After the governing equations of motion are established, an extensive computation work is performed to examine the effects of road surface roughness and vehicle suspension on the dynamic behaviour and vehicle accidents. It is demonstrated that for the high-sided road vehicle and wind forces specified in the computation, the accident vehicle speed of the road vehicle running on the road of average condition is relatively smaller than that running on the road of very good condition for a given crosswind gust. The vehicle suspension system should be taken into consideration, and the accident vehicle speed becomes smaller if the vehicle suspension system has softer springs and lighter dampers.

수치 해석을 이용한 난류 경계층 내 벽면 변동 압력을 받는 보의 진동 해석 (Vibration of Beams Induced by Wall Pressure Fluctuation in Turbulent Boundary Layer Using Numerical Approaches)

  • 유정수;김은비
    • 한국소음진동공학회논문집
    • /
    • 제23권8호
    • /
    • pp.698-706
    • /
    • 2013
  • Structural vibration induced by excitation forces under turbulent boundary layer is investigated in terms of the numerical analysis in this paper. Since the responses of structures excited by the wall pressure fluctuation(WPF) are described by the power spectral density functions, they are calculated and reviewed theoretically for finite and infinite length beams. For the use of numerical approaches, the WPF needs to be discretized but conventional finite element method is not much effective for that purpose because the WPF lose the spatial correlation characteristics. As an alternative numerical technique for WPF modelling, a wavenumber domain finite element approach, called waveguide finite element method, is examined here for infinite length beams. From the comparison between the numerical and theoretical results, it was confirmed that the WFE method can effectively and easily cope with the excitation from WPF and hence the suitable approach.