• Title/Summary/Keyword: power sources

Search Result 2,185, Processing Time 0.026 seconds

Experiences with Simulation Software for the Analysis of Inverter Power Sources in Arc Welding Applications

  • Fischer W.;Mecke H.;Czarnecki T.K.
    • Proceedings of the KIPE Conference
    • /
    • 2001.10a
    • /
    • pp.731-736
    • /
    • 2001
  • Nowadays various simulation tools are widely used for the design and the analysis of power electronic converters. From the engineering point of view it is rather difficult to parameterize power semiconductor device models without the knowledge of basic physical parameters. In recent years some data sheet driven behavioral models or so called 'wizard' tools have been introduced to solve this problem. In this contribution some experiences with some user-friendly power semiconductor models will be discussed. Using special simulation test circuits it is possible to get information on the static and dynamic behavior of the parameterized models before they are applied in more complex schemes. These results can be compared with data sheets or with measurements. The application of these models for power loss analysis of inverter type arc welding power sources will be described.

  • PDF

Power Electronics as an Enabling Technology for Renewable Energy Integration

  • Blaabjerg, F.;Chen, Z.
    • Journal of Power Electronics
    • /
    • v.3 no.2
    • /
    • pp.81-89
    • /
    • 2003
  • The global electrical energy consumption is still rising and there is a steady demand to increase the power capacity, to produce, distribute and use the energy as0 efficient as possible and furthermore to set up incentives to save energy at the md-user. Two major technologies will play important roles to fulfill those targets. One is to change the electrical power production sources from the conventional, fossil (and short term) based energy sources to renewable energy resources. The other is to use high efficiency power electronics in power systems for high efficiency and high performance applications. This paper discusses both areas, in particular the power electronic application in wind power integration.

The long-term mm/radio activity of active galactic nuclei

  • Trippe, Sascha
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.36 no.2
    • /
    • pp.59.1-59.1
    • /
    • 2011
  • I present an analysis of the long-term evolution of the fluxes of six active galactic nuclei (AGN) - 0923+392, 3C 111, 3C 273, 3C 345, 3C 454.3, and 3C 84 - in the frequency range 80 - 267 GHz using archival calibration data of the IRAM Plateau de Bure Interferometer. Our dataset spans a long timeline of ~14 years with 974 - 3027 flux measurements per source. We find strong (factors ~2-8) flux variability on timescales of years for all sources. The flux density distributions of five out of six sources show clear signatures of bi- or even multimodality. Our sources show mostly steep (alpha~0.5-1), variable spectral indices that indicate outflow dominated emission; the variability is most probably due to optical depth variations. The power spectra globally correspond to red-noise spectra with five sources being located between the cases of white and flicker noise and one source (3C 111) being closer to the case of random walk noise. For three sources the low-frequency ends of their power spectra appear to be upscaled in spectral power by factors ~2-3 with respect to the overall powerlaws. We conclude that the source emission cannot be described by uniform stochastic emission processes; instead, a distinction of "quiescent" and (maybe multiple) "flare" states of the source emission appears to be necessary.

  • PDF

Improving Physical-Layer Security for Full-duplex Radio aided Two-Way Relay Networks

  • Zhai, Shenghua;An, Jianping
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.14 no.2
    • /
    • pp.562-576
    • /
    • 2020
  • The power allocation optimization problem is investigated for improving the physical-layer security in two-way relaying networks, where a full-duplex relay based half-jamming protocol (HJP-FDR) is considered. Specially, by introducing a power splitter factor, HJP-FDR divides the relay's power into two parts: one for forwarding the sources' signals, the other for jamming. An optimization problem for power split factor is first developed, which is proved to be concave and closed-form solution is achieved. Moreover, we formulate a power allocation problem to determine the sources' power subject to the total power constraint. Applying the achieved closed-form solutions to the above-mentioned problems, a two-stage strategy is proposed to implement the overall power allocation. Simulation results highlight the effectiveness of our proposed algorithm and indicate the necessity of optimal power allocation.

Effect of Adjustable Speed Pumped Storage Power Generator on the Frequency Control Against the Intermittence of Wind Turbine Output (풍력발전기 출력변동성에 대비한 가변속 양수발전기의 주파수 제어효과)

  • Park, Min-Su;Chun, Yeong-Han
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.63 no.3
    • /
    • pp.338-342
    • /
    • 2014
  • Energy storage is a key issue when integrating large amounts of intermittent and non-dispatchable renewable energy sources into electric power systems. To maintain the instantaneous power balance and to compensate for the influence of power fluctuations from renewable sources, flexible capability for power control is needed. Adjustable Speed Pumped Storage Power Generator is pumped storage unit that is adjustable for pump output adjustments as well as the highest efficiency operations because it has fast response time. In this paper we address the adjustable speed pumped storage power generator for frequency control against the intermittence of wind turbine output and calculate the appropriate capacity of adjustable speed pumped storage power generator.

Solar Power Generation Prediction Algorithm Using the Generalized Additive Model (일반화 가법모형을 이용한 태양광 발전량 예측 알고리즘)

  • Yun, Sang-Hui;Hong, Seok-Hoon;Jeon, Jae-Sung;Lim, Su-Chang;Kim, Jong-Chan;Park, Chul-Young
    • Journal of Korea Multimedia Society
    • /
    • v.25 no.11
    • /
    • pp.1572-1581
    • /
    • 2022
  • Energy conversion to renewable energy is being promoted to solve the recently serious environmental pollution problem. Solar energy is one of the promising natural renewable energy sources. Compared to other energy sources, it is receiving great attention because it has less ecological impact and is sustainable. It is important to predict power generation at a future time in order to maximize the output of solar energy and ensure the stability and variability of power. In this paper, solar power generation data and sensor data were used. Using the PCC(Pearson Correlation Coefficient) analysis method, factors with a large correlation with power generation were derived and applied to the GAM(Generalized Additive Model). And the prediction accuracy of the power generation prediction model was judged. It aims to derive efficient solar power generation in the future and improve power generation performance.

Elasticity of substitution of renewable energy for nuclear power: Evidence from the Korean electricity industry

  • Kim, Kwangil
    • Nuclear Engineering and Technology
    • /
    • v.51 no.6
    • /
    • pp.1689-1695
    • /
    • 2019
  • This study suggests a simple economic model to analyze electricity grid that consists of different power sources. The substitutability of renewable energy for nuclear power in Korean electricity transmission network is investigated by suggested model. The monthly data from January 2006 to December 2013 reported by Electricity Power Statistics Information System (EPSIS) of Korea Power EXchange (KPX) are used. To estimate the elasticities of substitution among four power sources (i.e. coal, natural gas, nuclear power, and renewable energy), this paper uses the trans-log cost function model on which local concavity restrictions are imposed. The estimated Hicks-Allen and Morishima elasticity of substitution shows that renewable electricity and nuclear power are complementary. The results also evidenced that renewable electricity and fossil fueled thermal power generation are substitutes.

Analysis on Temperature Distribution and Current-Carrying Capacity of GIL Filled with Fluoronitriles-CO2 Gas Mixture

  • Chen, Geng;Tu, Youping;Wang, Cong;Cheng, Yi;Jiang, Han;Zhou, Hongyang;Jin, Hua
    • Journal of Electrical Engineering and Technology
    • /
    • v.13 no.6
    • /
    • pp.2402-2411
    • /
    • 2018
  • Fluoronitriles-$CO_2$ gas mixtures are promising alternatives to $SF_6$ in environmentally-friendly gas-insulated transmission lines (GILs). Insulating gas heat transfer characteristics are of major significance for the current-carrying capacity design and operational state monitoring of GILs. In this paper, a three-dimensional calculation model was established for a GIL using the thermal-fluid coupled finite element method. The calculated results showed close agreement with experimentally measured data. The temperature distribution of a GIL filled with the Fluoronitriles-$CO_2$ mixture was obtained and compared with those of GILs filled with $CO_2$ and $SF_6$. Furthermore, the effects of the mixture ratio of the component gases and the gas pressure on the temperature rise and current-carrying capacity of the GIL were analyzed. Results indicated that the heat transfer performance of the Fluoronitriles-$CO_2$ gas mixture was better than that of $CO_2$ but worse than that of $SF_6$. When compared with $SF_6$, use of the Fluoronitriles-$CO_2$ gas mixture caused a reduction in the GIL's current-carrying capacity. In addition, increasing the Fluoronitriles gas component ratio or increasing the pressure of the insulating gas mixture could improve the heat dissipation and current-carrying capacity of the GIL. These research results can be used to design environmentally-friendly GILs containing Fluoronitriles-$CO_2$ gas mixtures.

A Study on the Reliability Evaluation of Power Distribution System with Distributed Generations using Power Supplied Probability (전력공급확률을 이용한 분산형 전원을 고려한 배전계통 신뢰도 평가에 관한 연구)

  • Lee, Hee-Tae;Moon, Jong-Fil;Kim, Jae-Chul
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.59 no.12
    • /
    • pp.2119-2124
    • /
    • 2010
  • Reliability evaluation of power distribution system is the evaluation for all customers supplied from one power source as main transformer located in substation. However, power sources include not only the main transformer but distributed generations. Typical reliability evaluation has focused on configuration of power system with one source including failure rates of equipment. In this paper, we focus on not only configuration but power sources as distributed generations. New reliability evaluation method using power supplied probability (PSP) is proposed. The proposed evaluation method are proved through case studies.

Double-Input DC-DC Converter for Applications with Wide-Input-Voltage-Ranges

  • Hu, Renjun;Zeng, Jun;Liu, Junfeng;Yang, Jinming
    • Journal of Power Electronics
    • /
    • v.18 no.6
    • /
    • pp.1619-1626
    • /
    • 2018
  • The output power of most facilities for renewable energy generation is unstable due to external environmental conditions. In distributed power systems with two or more sources, a stable output can be achieved with the complementary power supply among the different input sources. In this paper, a double-input DC-DC converter with a wide-input-voltage-range is proposed for renewable energy generation. This converter has the following advantages: the circuit is simple, and the input voltage range is wide and the fault tolerance is excellent. The operation modes and the steady-state analysis are examined. Finally, experimental results are illustrated to verify the correctness of the analysis and the feasibility of the proposed converter.