• Title/Summary/Keyword: power series

Search Result 2,977, Processing Time 0.035 seconds

Electrical Characteristic of IGZO Oxide TFTs with 3 Layer Gate Insulator

  • Lim, Sang Chul;Koo, Jae Bon;Park, Chan Woo;Jung, Soon-Won;Na, Bock Soon;Lee, Sang Seok;Cho, Kyoung Ik;Chu, Hye Yong
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2014.02a
    • /
    • pp.344-344
    • /
    • 2014
  • Transparent amorphous oxide semiconductors such as a In-Ga-Zn-O (a-IGZO) have advantages for large area electronic devices; e.g., uniform deposition at a large area, optical transparency, a smooth surface, and large electron mobility >10 cm2/Vs, which is more than an order of magnitude larger than that of hydrogen amorphous silicon (a-Si;H).1) Thin film transistors (TFTs) that employ amorphous oxide semiconductors such as ZnO, In-Ga-Zn-O, or Hf-In-Zn-O (HIZO) are currently subject of intensive study owing to their high potential for application in flat panel displays. The device fabrication process involves a series of thin film deposition and photolithographic patterning steps. In order to minimize contamination, the substrates usually undergo a cleaning procedure using deionized water, before and after the growth of thin films by sputtering methods. The devices structure were fabricated top-contact gate TFTs using the a-IGZO films on the plastic substrates. The channel width and length were 80 and 20 um, respectively. The source and drain electrode regions were defined by photolithography and wet etching process. The electrodes consisting of Ti(15 nm)/Al(120 nm)/Ti(15nm) trilayers were deposited by direct current sputtering. The 30 nm thickness active IGZO layer deposited by rf magnetron sputtering at room temperature. The deposition condition is as follows: a rf power 200 W, a pressure of 5 mtorr, 10% of oxygen [O2/(O2+Ar)=0.1], and room temperature. A 9-nm-thick Al2O3 layer was formed as a first, third gate insulator by ALD deposition. A 290-nm-thick SS6908 organic dielectrics formed as second gate insulator by spin-coating. The schematic structure of the IGZO TFT is top gate contact geometry device structure for typical TFTs fabricated in this study. Drain current (IDS) versus drain-source voltage (VDS) output characteristics curve of a IGZO TFTs fabricated using the 3-layer gate insulator on a plastic substrate and log(IDS)-gate voltage (VG) characteristics for typical IGZO TFTs. The TFTs device has a channel width (W) of $80{\mu}m$ and a channel length (L) of $20{\mu}m$. The IDS-VDS curves showed well-defined transistor characteristics with saturation effects at VG>-10 V and VDS>-20 V for the inkjet printing IGZO device. The carrier charge mobility was determined to be 15.18 cm^2 V-1s-1 with FET threshold voltage of -3 V and on/off current ratio 10^9.

  • PDF

Development of Simulation Model for Modular Multilevel Converters Using A Dynamic Equivalent Circuit (동적 등가 회로를 이용한 MMC의 시뮬레이션 모델 개발)

  • Shin, Dong-Cheoul;Lee, Dong-Myung
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.3
    • /
    • pp.17-23
    • /
    • 2020
  • This paper proposes a simulation model using an equivalent circuit for the development of an MMC system. The MMC has been chosen as the most suitable topology for high voltage power transmission, such as a voltage-type HVDC, and it has dozens to hundreds of sub-modules in the form of a half-bridge or full-bridge connected in series. A simulation study is essential for the development of an MMC algorithm. On the other hand, it is virtually impossible to construct and implement MMC simulation models, including hundreds or thousands of switching devices. Therefore, this paper presents an MMC equivalent model, which is easily expandable and implemented by modeling the dynamic characteristics. The voltage and current equation of the equivalent circuit was calculated using the direction of the arm current and switching signal. The model was implemented on Matlab/Simulink. In this paper, to show the validity of the model developed using Matlab/Simulink, the simulation results of a five-level MMC using the real switching element and the proposed equivalent model are shown. The validity of the proposed model was verified by showing that the current and voltage waveform in the two models match each other.

Information in the Implied Volatility Curve of Option Prices and Implications for Financial Distribution Industry (옵션 내재 변동성곡선의 정보효과와 금융 유통산업에의 시사점)

  • Kim, Sang-Su;Liu, Won-Suk;Son, Sam-Ho
    • Journal of Distribution Science
    • /
    • v.13 no.5
    • /
    • pp.53-60
    • /
    • 2015
  • Purpose - The purpose of this paper is to shed light on the importance of the slope and curvature of the volatility curve implied in option prices in the KOSPI 200 options index. A number of studies examine the implied volatility curve, however, these usually focus on cross-sectional characteristics such as the volatility smile. Contrary to previous studies, we focus on time-series characteristics; we investigate correlation dynamics among slope, curvature, and level of the implied volatility curve to capture market information embodied therein. Our study may provide useful implications for investors to utilize current market expectations in managing portfolios dynamically and efficiently. Research design, data, and methodology - For our empirical purpose, we gathered daily KOSPI200 index option prices executed at 2:50 pm in the Korean Exchange distribution market during the period of January 2, 2004 and January 31, 2012. In order to measure slope and curvature of the volatility curve, we use approximated delta distance; the slope is defined as the difference of implied volatilities between 15 delta call options and 15 delta put options; the curvature is defined as the difference between out-of-the-money (OTM) options and at-the-money (ATM) options. We use generalized method of moments (GMM) and the seemingly unrelated regression (SUR) method to verify correlations among level, slope, and curvature of the implied volatility curve with statistical support. Results - We find that slope as well as curvature is positively correlated with volatility level, implying that put option prices increase in a downward market. Further, we find that curvature and slope are positively correlated; however, the relation is weakened at deep moneyness. The results lead us to examine whether slope decreases monotonically as the delta increases, and it is verified with statistical significance that the deeper the moneyness, the lower the slope. It enables us to infer that when volatility surges above a certain level due to any tail risk, investors would rather take long positions in OTM call options, expecting market recovery in the near future. Conclusions - Our results are the evidence of the investor's increasing hedging demand for put options when downside market risks are expected. Adding to this, the slope and curvature of the volatility curve may provide important information regarding the timing of market recovery from a nosedive. For financial product distributors, using the dynamic relation among the three key indicators of the implied volatility curve might be helpful in enhancing profit and gaining trust and loyalty. However, it should be noted that our implications are limited since we do not provide rigorous evidence for the predictability power of volatility curves. Meaning, we need to verify whether the slope and curvature of the volatility curve have statistical significance in predicting the market trough. As one of the verifications, for instance, the performance of trading strategy based on information of slope and curvature could be tested. We reserve this for the future research.

Analysis of types of conscious and relationship in animation - Focusing on TV series (애니메이션 속 자아유형과 관계분석 - TV장편 <천원돌파 그렌라간>을 중심으로)

  • Park, Sung-Won
    • Cartoon and Animation Studies
    • /
    • s.45
    • /
    • pp.1-25
    • /
    • 2016
  • This study aims to study the relationship and narrative structure through types of conscious shown through characters of animation. Regardless of professional knowledge, animation viewers are able to decide sympathy cognitively during watching. There are previous studies examining elements regarding the sympathy felt by viewers, "how much sympathy one feels about the story" conveyed by character is one of the most significant element. "Sympathizing" is reacting to the emotion of character, which does not concentrate on visual phenomenon revealing from appearance and mise en scene, but from "conscious" establishing relationship from behavior and practice. In other words, it starts from in-depth insight regarding the types of conscious and relationship between characters. Therefore, this thesis aims to analyze the types of conscious of main character Simon of Japanese animation which was aired in Korea in 27 episodes, and analyze how it conducted meaning structuralization of relationship with surrounding characters in the growth process of every episode. When analyzing the animation, the study concentrated on analyzing the conscious formation process of character, completeness of relationship and structure rather than the plot or power of delivery of direction, to insist that animation should not only convey humor or fun but secure the in-dept self discernment.

Effect of Naeso-san on Gastric Motility between Normal Intact and Antral Dilatated Rats (내소산(內消散)의 정상 및 위 유문부 확장 흰 쥐의 위 운동성에 대한 효능)

  • Kim, Jin-Seok;Yoon, Sang-Hyub
    • The Journal of Internal Korean Medicine
    • /
    • v.29 no.1
    • /
    • pp.117-129
    • /
    • 2008
  • Background & Objective : Naeso-san(NSS) has been used for the treatment of functional dyspepsia, regarded as a gastric dysmotility disease. A main cause of gastric dysmotility is antral dilatation or antroduodenal uncoordination. Therefore, we investigated the effect of NSS on gastric motility and its mechanism of action, as well as the morphologic changes in antral dilatated rats. Methods : Antral dilatated rats were induced by wrapping a nonabsorbable rubber ring(D:6mm, W:4mm, T:1mm) around the 1st portion of the duodenum for 8 weeks. Then morphologic changes were investigated and compared with normal intact rats before and after 8 weeks. Gastric emptying was measured by administration of normal saline(NS) or NSS in normal intact and antral dilatated rats. In another series of experiments to evaluate the mechanism of NSS under delayed conditions, normal intact rats were treated with atropine sulfate(1mg/kg, s.c.), quinpirole HCl(0.3mg/kg, i.p.), $NAME(N^{G}-nitro-L-arginine$ methyl ester, 75mg/kg, s.c.) and cisplatin(10mg/kg, i.p.), respectively. The myoelectrical activity of the gastric smooth muscle was recorded in normal intact and antral dilatated rats. The contractile waves were measured for 30 minutes before and after administration of each solution(NS, NSS). Results : Body weight gain of antral dilatated rats was significantly lower than that of the controls. Futhermore, we found the thickness of the mucosal and muscular layers and surface area of the stomach increased significantly compared with controls. NSS 278㎎/㎏ improved gastric emptying more than normal saline or NSS 93mg/kg in normal intact(p=0.026) and antral dilatated rats(p=0.03). NSS enhanced gastric emptying significantly in the NAME treated group(p=0.002). NSS 278mg/kg increased the significant postprandial dominant power than that of NS in normal intact rats, whereas there was no statistical significance in antral dilatated rats. Conclusions : NSS stimulates gastric motility through the cholinergic pathway. We expect that pathologic model with antral dilatation can be used as an exprimental tool which is similar to dyspepsia and NSS would be effective especially in dysmotility-like functional dyspepsia with antral dilatation or impaired reservoir functions such as gastric adaptive relaxation.

  • PDF

A Comparison Study on Transition Experiment to Sustainable Socio-technical System: The Cases of Green Transition Experiment in the Regions and Cities (지속가능한 사회·기술시스템으로의 전환 실험 비교: 지역 기반의 녹색전환을 중심으로)

  • Seong, Jieun;Cho, Yejin
    • Journal of Technology Innovation
    • /
    • v.22 no.2
    • /
    • pp.51-75
    • /
    • 2014
  • Sustainability has already become one of the most important innovation policy agendas in many countries. Korea has tried to emulate this global trend in various forms, unfortunately with little success. A very strong tradition of centralized administration in Korea has meant that local communities and municipalities have remained more or less passive in tackling their own sustainability issues and problems. In recent years, with the impetus of huge democratization attempts in Korea since the late 1980s, there have been some local attempts to remedy these imbalances since the early 2000s. A series of local experiments to try and test green alternatives against the very hostile environment have been implemented, with varying degrees of success. This study analyzed cases of transition experiment to sustainable socio-technical system such as MUSIC project, Low Carbon Green Village and Citizens' Sunlight Power Stations. To draw politic meanings for sustainable socio-technical system, these content, process of conversion and feature were examined.

Research on the Multi-electrode Plasma Discharge for the Large Area PECVD Processing

  • Lee, Yun-Seong;You, Dae-Ho;Seol, You-Bin
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.02a
    • /
    • pp.478-478
    • /
    • 2012
  • Recently, there are many researches in order to increase the deposition rate (D/R) and improve film uniformity and quality in the deposition of microcrystalline silicon thin film. These two factors are the most important issues in the fabrication of the thin film solar cell, and for the purpose of that, several process conditions, including the large area electrode (more than 1.1 X 1.3 (m2)), higher pressure (1 ~ 10 (Torr)), and very high frequency regime (VHF, 40 ~ 100 (MHz)), have been needed. But, in the case of large-area capacitively coupled discharges (CCP) driven at frequencies higher than the usual RF (13.56 (MHz)) frequency, the standing wave and skin effects should be the critical problems for obtaining the good plasma uniformity, and the ion damage on the thin film layer due to the high voltage between the substrate and the bulk plasma might cause the defects which degrade the film quality. In this study, we will propose the new concept of the large-area multi-electrode (a new multi-electrode concept for the large-area plasma source), which consists of a series of electrodes and grounds arranged by turns. The experimental results with this new electrode showed the processing performances of high D/R (1 ~ 2 (nm/sec)), controllable crystallinity (~70% and controllable), and good uniformity (less than 10%) at the conditions of the relatively high frequency of 40 MHz in the large-area electrode of 280 X 540 mm2. And, we also observed the SEM images of the deposited thin film at the conditions of peeling, normal microcrystalline, and powder formation, and discussed the mechanisms of the crystal formation and voids generation in the film in order to try the enhancement of the film quality compared to the cases of normal VHF capacitive discharges. Also, we will discuss the relation between the processing parameters (including gap length between electrode and substrate, operating pressure) and the processing results (D/R and crystallinity) with the process condition map for ${\mu}c$-Si:H formation at a fixed input power and gas flow rate. Finally, we will discuss the potential of the multi-electrode of the 3.5G-class large-area plasma processing (650 X 550 (mm2) to the possibility of the expansion of the new electrode concept to 8G class large-area plasma processing and the additional issues in order to improve the process efficiency.

  • PDF

Recurrent Neural Network Modeling of Etch Tool Data: a Preliminary for Fault Inference via Bayesian Networks

  • Nawaz, Javeria;Arshad, Muhammad Zeeshan;Park, Jin-Su;Shin, Sung-Won;Hong, Sang-Jeen
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.02a
    • /
    • pp.239-240
    • /
    • 2012
  • With advancements in semiconductor device technologies, manufacturing processes are getting more complex and it became more difficult to maintain tighter process control. As the number of processing step increased for fabricating complex chip structure, potential fault inducing factors are prevail and their allowable margins are continuously reduced. Therefore, one of the key to success in semiconductor manufacturing is highly accurate and fast fault detection and classification at each stage to reduce any undesired variation and identify the cause of the fault. Sensors in the equipment are used to monitor the state of the process. The idea is that whenever there is a fault in the process, it appears as some variation in the output from any of the sensors monitoring the process. These sensors may refer to information about pressure, RF power or gas flow and etc. in the equipment. By relating the data from these sensors to the process condition, any abnormality in the process can be identified, but it still holds some degree of certainty. Our hypothesis in this research is to capture the features of equipment condition data from healthy process library. We can use the health data as a reference for upcoming processes and this is made possible by mathematically modeling of the acquired data. In this work we demonstrate the use of recurrent neural network (RNN) has been used. RNN is a dynamic neural network that makes the output as a function of previous inputs. In our case we have etch equipment tool set data, consisting of 22 parameters and 9 runs. This data was first synchronized using the Dynamic Time Warping (DTW) algorithm. The synchronized data from the sensors in the form of time series is then provided to RNN which trains and restructures itself according to the input and then predicts a value, one step ahead in time, which depends on the past values of data. Eight runs of process data were used to train the network, while in order to check the performance of the network, one run was used as a test input. Next, a mean squared error based probability generating function was used to assign probability of fault in each parameter by comparing the predicted and actual values of the data. In the future we will make use of the Bayesian Networks to classify the detected faults. Bayesian Networks use directed acyclic graphs that relate different parameters through their conditional dependencies in order to find inference among them. The relationships between parameters from the data will be used to generate the structure of Bayesian Network and then posterior probability of different faults will be calculated using inference algorithms.

  • PDF

Development of Large-area Plasma Sources for Solar Cell and Display Panel Device Manufacturing

  • Seo, Sang-Hun;Lee, Yun-Seong;Jang, Hong-Yeong
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.08a
    • /
    • pp.148-148
    • /
    • 2011
  • Recently, there have been many research activities to develop the large-area plasma source, which is able to generate the high-density plasma with relatively good uniformity, for the plasma processing in the thin-film solar cell and display panel industries. The large-area CCP sources have been applied to the PECVD process as well as the etching. Especially, the PECVD processes for the depositions of various films such as a-Si:H, ${\mu}c$-Si:H, Si3N4, and SiO2 take a significant portion of processes. In order to achieve higher deposition rate (DR), good uniformity in large-area reactor, and good film quality (low defect density, high film strength, etc.), the application of VHF (>40 MHz) CCP is indispensible. However, the electromagnetic wave effect in the VHF CCP becomes an issue to resolve for the achievement of good uniformity of plasma and film. Here, we propose a new electrode as part of a method to resolve the standing wave effect in the large-area VHF CCP. The electrode is split up a series of strip-type electrodes and the strip-type electrodes and the ground ones are arranged by turns. The standing wave effect in the longitudinal direction of the strip-type electrode is reduced by using the multi-feeding method of VHF power and the uniformity in the transverse direction of the electrodes is achieved by controlling the gas flow and the gap length between the powered electrodes and the substrate. Also, we provide the process results for the growths of the a-Si:H and the ${\mu}c$-Si:H films. The high DR (2.4 nm/s for a-Si:H film and 1.5 nm/s for the ${\mu}c$-Si:H film), the controllable crystallinity (~70%) for the ${\mu}c$-Si:H film, and the relatively good uniformity (1% for a-Si:H film and 7% for the ${\mu}c$-Si:H film) can be obtained at the high frequency of 40 MHz in the large-area discharge (280 mm${\times}$540 mm). Finally, we will discuss the issues in expanding the multi-electrode to the 8G class large-area plasma processing (2.2 m${\times}$2.4 m) and in improving the process efficiency.

  • PDF

Synthesis and Photovoltaic Properties of Conjugated Polymers Having Push-pull Structure according to the Type of Side-chain in the N-Substituted Phenothiazine (Push-pull 구조의 공액 고분자 합성 및 Phenothiazine의 질소 원자에 치환된 Side-chain에 따른 유기박막태양전지로의 특성 연구)

  • Seong, Ki-Ho;Yun, Dae-Hee;Woo, Je-Wan
    • Applied Chemistry for Engineering
    • /
    • v.25 no.6
    • /
    • pp.624-631
    • /
    • 2014
  • In this study, a new series of conjugated polymer 3-(5-(5,6-bis(octyloxy)-7-(thiophen-2-yl)benzo[c][1,2,5]thiadiazol-4-yl)thiophen-2-yl)-10-(4-(octyloxy)phenyl)-10H-phenothiazine (P1) and 3-(5-(5,6-bis(octyloxy)-7-(thiophen-2-yl)benzo[c][1,2,5]thiadiazol-4-yl)thiophen-2-yl)-10-(4-((2-ethylhexyl)oxy)phenyl)-10H-phenothiazine (P2) were synthesised and organic photovoltaics (OPVs) properties were characterized. The push-pull structure polymer consisted of phenothiazine derivative as an electron donor and benzothiadiazole derivative as an electron acceptor. The aliphatic chain substituted aromatic ring was substituted at the position of N in phenothiazine for the electron-rich and improved solubility. Excellent thermal stabilities of P1 and P2 were confirmed by measured Td values as 321.9 and $323.7^{\circ}C$, respectively and the degrees of polymerization were 4,911 (P1) and 5,294 (P2). The maximum absorption wavelength of P1 and P2 were 549 and 566 nm, respectively. The device was fabricated and the OPVs property was measured. As a result, the power efficiency of conversion for P1 and P2 were 0.96 and 0.90%, respectively.