• Title/Summary/Keyword: power line signal

Search Result 641, Processing Time 0.024 seconds

Reduction of Power Disturbance by Contact Loss Phenomenon of a High Speed Electric Train Using Passive Filters (수동필터를 이용한 고속전철 이선현상에 의한 전원외란 저감)

  • Chang, Chin-Young;Jin, Kang-Hwan;Kang, Jeong-Nam;Park, Dong-Kyu;Kim, Yoon-Ho
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.59 no.2
    • /
    • pp.206-211
    • /
    • 2010
  • Since high-speed train is a dynamic load in which electric power is externally supplied, contact loss between the catenary and pantograph occurs. This phenomena including vibrations generates frequently irregular arcs, which, in turn causes EMI. Thus it is very important to develop the approach to reduce arc phenomenon by contact loss, as speed of electric railway vehicle increases. In case of an electric railway vehicle using electrical power, compared with diesel rolling stock, Power Line Disturbance(PLD) such as harmonics, transient voltage and current, Electromagnetic Interference(EMI), and dummy signal injection etc usually occur. In this study, the dynamic characteristics of a contact wire and a pantograph suppling electrical power to high-speed train are investigated with an electrical response point. To implement power line disturbance induced by contact loss phenomenon for high speed train operation, a hardware simulator which considers contact loss between contact wire and pantograph as well as contact wire deviation is developed. It is confirmed by the experiments that contact loss effect is largely dependent on voltage conditions when the contact loss occurs. Also, a passive filter is designed to reduce power disturbance and the designed system is verified by experiment.

A Fully Integrated 5-GHz CMOS Power Amplifier for IEEE 802.11a WLAN Applications

  • Baek, Sang-Hyun;Park, Chang-Kun;Hong, Song-Cheol
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.7 no.2
    • /
    • pp.98-101
    • /
    • 2007
  • A fully integrated 5-GHz CMOS power amplifier for IEEE 802.11a WLAN applications is implemented using $0.18-{\mu}m$ CMOS technology. An on-chip transmission-line transformer is used for output matching network and voltage combining. Input balun, inter-stage matching components, output transmission line transformer and RF chokes are fully integrated in the designed amplifier so that no external components are required. The power amplifier occupies a total area of $1.7mm{\times}1.2mm$. At a 3.3-V supply voltage, the amplifier exhibits a 22.6-dBm output 1-dB compression point, 23.8-dBm saturated output power, 25-dB power gain. The measured power added efficiency (PAE) is 20.1 % at max. peak, 18.8% at P1dB. When 54 Mbps/64 QAM OFDM signal is applied, the PA delivers 12dBm of average power at the EVM of -25dB.

Implementation of Power Line Modem Using a Direct Sequence Spread Spectrum Technique (직접대역확산 기법을 적용한 전력선 모뎀의 구현)

  • 송문규;김대우;사공석진;차균현
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.18 no.2
    • /
    • pp.218-230
    • /
    • 1993
  • A power line modem(PLM) which transfers data safely through power lines in houses or small offices is considered. When a power line is used for communications, transmitted signals could be affected by the channel characteristics such as frequency-selective fading, interference, and time-varying attenuation. In order to overcome these impairments, a direct sequence(DS) technique which is well known as an effective instrument against a variety of interferences and hostile channel properties is employed. Using a DS technique, however, requires more circuits such as PN code generator circuits, code modification circuits, and complicated synchronization circuits, and it also results in substantial acquisition delay. In this paper, some of these circuits are implemented via software programmed in the system controller, and the complicated synchronization circuits are replaced by simple circuits utilizing a 60 Hz power signal for synchronization. The synchronization ciruits used in this paper virtually eliminate the substantial acquisition delay, and is also designed to free influence of 60 Hz zero crossing jitters which reside in a power signal. As a result, a PLM using a DS technique is realized in the form of wall-socket plug, and the PLM hardware would be very much simplified.

  • PDF

Development of a Lighting Control Switch Using Power Line Communication Technology (전력선 통신기술을 이용한 조명제어 스위치의 개발)

  • Song, Jae-Yong;Moon, Seung-Bo;Kil, Gyung-Suk;Lee, Gyung-Soo;Kim, Chang-Yul
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • v.9 no.1
    • /
    • pp.281-284
    • /
    • 2005
  • A lighting control switch, extended to incorporate a power line communication technology, is developed. The system uses not an exclusive microprocessor but a general one, and developed PPM protocol. The coupling circuit is a type of an isolation LC filter, and the impedance of the circuit was designed as low as possible to extend signal transmission distance. The frequency of the carrier, considering the data length and signal attenuation as the length of power lines, was set at 250 kHz. Tests on a prototype in an indoor power lines have shown that the switch has a stable operation with the distance of power lines

  • PDF

Sensorless Control of Wound Rotor Synchronous Machines Based on High-frequency Signal Injection into the Stator Windings

  • Chen, Zhiguo;Deng, Xianming;Huang, Kun;Zhen, Wenhuan;Wang, Lei
    • Journal of Power Electronics
    • /
    • v.13 no.4
    • /
    • pp.669-678
    • /
    • 2013
  • This paper proposes a sensorless control approach for Wound Rotor Synchronous Machines (WRSMs) based on a high frequency voltage signal injection into the stator side U phase and VW line, respectively. Considering the machine itself as a rotor position sensor, the rotor position observer is established according to the principles of the rotary transformer. A demodulation method for the high frequency signal inducted in the rotor is proposed as well. Simulation and experimental results show that the proposed sensorless control approach has high performance and good practicability.

A study on the computer diagnosis that apply Neural-Fuzzy algorithm accumulation detection of Partial Discharge signal (부분방전 신호의 누적검출과 뉴럴-퍼지 알고리즘을 이용한 컴퓨터 진단에 관한 연구)

  • Hwang, Kyoung-Jun;Yeoum, Keoung-Tae;Kim, Yong-Kab;Kim, Jin-Su
    • Proceedings of the KIEE Conference
    • /
    • 2007.07a
    • /
    • pp.1445-1446
    • /
    • 2007
  • In this paper, we have studied for analysis of the partial discharge(PD) signal in power transmission line. The PD signal has estimated as detected signal accumulation of a PRPDA method by using Labview, and analyzed with neural-fuzzy algorithm. With practical PD logic implementation of theoretical detected system and hardware implementation, the device for Hipotronics Company's 22.9kV or 154kV setup have generated and then have applied with 18kV,20kV with 1:1 time probe. It's also used the LDPE 0.27mmt (scratch error 0.05mmt) to sample for making PD. Our new class of PD detected algorithm have also compared with previous PRPDA or Neural Fuzzy algorithm, which has diagnose more conveniently by adding numerical values.

  • PDF

The Simplified PWM Method using Serial Communication in Cascaded H-Bridge Multilevel Inverter (직렬통신을 이용한 H-브릿지 멀티레벨 인버터의 PWM 구현방법)

  • Park Young-Min;Ryu Han-Seong;Lee Hyun-Won;Lee Se-Hyun;Lee Chung-Dong;Yoo Jl-Yoon
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.9 no.6
    • /
    • pp.620-627
    • /
    • 2004
  • As h-bridge multilevel inverter is connected with series of single phase power cell, so it obtain high voltage using low voltage power semi-conductor and output voltage similar to sine wave. In this topology, the number of power cell increases in proportion to the output voltage level. Therefore, there are drawbacks that are responsibility against operating ability of main controller and signal wire increase. However, we can overcome this problems by the substitution of serial communication for the PWM signal in power cell control. Additionally, it has merits of reliability and maintenance. This paper deals with the synchronization and phase-shift method of power cell PWM using CAN(Controller Area Network) communication interrupt in H-bridge multilevel inverter. The advantages of proposed method are signal-line simplification using serial communication between main controller and cell controller, burden reduction in main controller, modularization of power cell, easy protection of each power cell, expandability improvement and reliability increase of control signal and power cell. This paper establishes propriety and reliability of proposed method through experiment of 13-level H-bridge multilevel inverter.

A Novel Dead-Time Compensation Method using Disturbance Observer

  • Youn, Myung-Joong;Moon, Hyung-Tae;Kim, Hyun-Soo
    • Journal of Power Electronics
    • /
    • v.2 no.1
    • /
    • pp.55-66
    • /
    • 2002
  • A new on-line dead-time compensation method for a permanent magnet (PM) synchronous motor drive is proposed. Using a simple disturbance observer without any additional circuit and off-line experimental measurement, disturbance voltages in the synchronous reference dq frame caused by the dead time and non-ideal switching characteristics of power devices are estimated in an on-line manner and fed to voltage references in order to compensate the dead-time effects. The proposed method is applied to a PM synchronous motor drive system and implemented by using software of a digital signal processor (DSP) TMS320C31. Simulations and experiments are carried out for this system and the results well demonstrate the effectiveness of the proposed method.

Study on Efficient Impulsive Noise Mitigation for Power Line Communication

  • Seo, Sung-Il
    • International journal of advanced smart convergence
    • /
    • v.8 no.2
    • /
    • pp.199-203
    • /
    • 2019
  • In this paper, we propose the efficient impulsive noise mitigation scheme for power line communication (PLC) systems in smart grid applications. The proposed scheme estimates the channel impulsive noise information of receiver by applying machine learning. Then, the estimated impulsive noise is updated in data base. In the modulator, the impulsive noise which reduces the PLC performance is effectively mitigated through proposed technique. As an impulsive noise model, Middleton Class A interference model was employed. The performance is evaluated in terms of bit error rate (BER). From the simulation results, it is confirmed that the proposed scheme has better BER performance compared to the conventional model. As a result, the proposed noise mitigation improves the signal quality of PLC systems by effectively removing the channel noise. The results of the paper can be applied to PLC systems for smart grid.

A Method for Estimating an Instantaneous Phasor Based on a Modified Notch Filter

  • Nam Soon-Ryul;Sohn Jin-Man;Kang Sang-Hee;Park Jong-Keun
    • Journal of Electrical Engineering and Technology
    • /
    • v.1 no.3
    • /
    • pp.279-286
    • /
    • 2006
  • A method for estimating the instantaneous phasor of a fault current signal is proposed for high-speed distance protection that is immune to a DC-offset. The method uses a modified notch filter in order to eliminate the power frequency component from the fault current signal. Since the output of the modified notch filter is the delayed DC-offset, delay compensation results in the same waveform as the original DC-offset. Subtracting the obtained DC-offset from the fault current signal yields a sinusoidal waveform, which becomes the real part of the instantaneous phasor. The imaginary part of the instantaneous phasor is based on the first difference of the fault current signal. Since a DC-offset also appears in the first difference, the DC-offset is removed trom the first difference using the results of the delay compensation. The performance of the proposed method was evaluated for a-phase to ground faults on a 345kV 100km overhead transmission line. The Electromagnetic Transient Program was utilized to generate fault current signals for different fault locations and fault inception angles. The performance evaluation showed that the proposed method can estimate the instantaneous phasor of a fault current signal with high speed and high accuracy.