• Title/Summary/Keyword: power law equation

Search Result 200, Processing Time 0.023 seconds

Explicit Equations of Normal Depth for Drainage Pipes (하수관 등류수심 양해법 산정식)

  • Yoo, Dong-Hoon;Rho, Jung-Soo
    • Journal of Korea Water Resources Association
    • /
    • v.38 no.7 s.156
    • /
    • pp.527-535
    • /
    • 2005
  • The computation of normal depth is very important for the design of channel and the analysis of water flow. Drainage pipe generally has the shape of curvature like circular or U-type, which is different from artificial triangular or rectangular channel. In this case, the computation of normal depth or the derivation of equations is very difficult because the change of hydraulic radius and area versus depth is not simple. If the ratio of the area to the diameter, or the hydraulic radius to the diameter of pipe is expressed as the water depth to the diameter of pipe by power law, however, the process of computing normal depth becomes relatively simple, and explicit equations can be obtained. In the present study, developed are the explicit normal depth equations for circular and U-type pipes, and the normal depth equation associated with Hagen (Manning) equation and friction factor equation of smooth turbulent flow by power law is also proposed because of its wide usage in engineering design.

Fractional wave propagation in radially vibrating non-classical cylinder

  • Fadodun, Odunayo O.;Layeni, Olawanle P.;Akinola, Adegbola P.
    • Earthquakes and Structures
    • /
    • v.13 no.5
    • /
    • pp.465-471
    • /
    • 2017
  • This work derives a generalized time fractional differential equation governing wave propagation in a radially vibrating non-classical cylindrical medium. The cylinder is made of a transversely isotropic hyperelastic John's material which obeys frequency-dependent power law attenuation. Employing the definition of the conformable fractional derivative, the solution of the obtained generalized time fractional wave equation is expressed in terms of product of Bessel functions in spatial and temporal variables; and the resulting wave is characterized by the presence of peakons, the appearance of which fade in density as the order of fractional derivative approaches 2. It is obtained that the transversely isotropic structure of the material of the cylinder increases the wave speed and introduces an additional term in the wave equation. Further, it is observed that the law relating the non-zero components of the Cauchy stress tensor in the cylinder under consideration generalizes the hypothesis of plane strain in classical elasticity theory. This study reinforces the view that fractional derivative is suitable for modeling anomalous wave propagation in media.

Study of reaction mechanism in pre-reforming for MCFC (MCFC의 예비 개질 반응 메커니즘 연구)

  • Lee, Woo-Hyung;Park, Yong-Ki
    • Industry Promotion Research
    • /
    • v.3 no.2
    • /
    • pp.1-8
    • /
    • 2018
  • In this study, the reaction mechanism of ethane and the reaction rate equation suitable for hydrocarbon reforming were studied. Through the reaction mechanism analysis, it was confirmed that three reactions (CO2 + H2, C2H6 + H2, C2H6 + H2O) proceed during the reforming reaction of ethane, each reaction rate (CO2+H2($r=3.42{\times}10-5molgcat.-1\;s-1$), C2H6+H2($r=3.18{\times}10-5mol\;gcat.-1s-1$), C2H6+H2O($r=1.84{\times}10-5mol\;gcat.-1s-1$)) was determined. It was confirmed that the C2H6 + H2O reaction was a rate determining step (RDS). And the reaction equation of this reaction can be expressed as r = kS * (KAKBPC2H6PH2O) / (1 + KAPC2H6 + KBPH2O) (KA = 2.052, KB = 6.384, $kS=0.189{\times}10-2$) through the Langmuir-Hinshelwood model. The obtained equation was compared with the derived power rate law without regard to the reaction mechanism and the power rate law was relatively similar fitting in the narrow concentration change region (about 2.5-4% of ethane, about 60-75% of water) It was confirmed that the LH model reaction equation based on the reaction mechanism shows a similar value to the experimental value in the wide concentration change region.

The design of the traction power supply for the test line of Light Rail Vehicle (경전철 시험선용 전력공급시스템 설계)

  • 김국진;백병산;전용주;정상기;김남규
    • Proceedings of the KSR Conference
    • /
    • 2001.10a
    • /
    • pp.322-328
    • /
    • 2001
  • In the electric railway systems, it is very important that we should design the system configuration, location and power capacity of substation. This paper presents the results of system configuration and system design of the DC traction power supply for the test line of Light Rail Vehicle. The voltage fluctuation of train and the power capacity of substation are calculated by computer simulation using the nodal equation, K.C.L/K.V.L, Ohm's law and superposition theory.

  • PDF

A 3 Dimensional Characteristic Analysis of SLIM by the 2-D Finite Element Method (2차원 유한요소법에 의한 SLIM의 3차원적 특성 해석)

  • Cho, Yun-Hyun;Kim, Yong-Joo;Shin, Pan-Seok;Kang, Do-Hyun
    • Proceedings of the KIEE Conference
    • /
    • 1990.11a
    • /
    • pp.37-42
    • /
    • 1990
  • In order to obtain optimal design criteria and operating parameters, a Single-sided Linear Induction Motor (SLIM) is analysed by using a 2-D finite element method with magnetic and current vector potential. In the analysing procedures, the governing equation is derived from Maxwell's equation combined with the magnetic vector potential. As a forcing term, 3-phase voltage source is employed using the Kirchhoff's voltage law in order to look into effects of the unbalanced 3-phase currents and air gap flux density. Also, 2ndary eddy current distribution, longitudinal end and transverse edge effects are in turns visualized by flux lines in 3 different analysing planes as functions of frequency and input power.

  • PDF

Simple Design of Commericial Pipe Flow (단일 상용관로의 간편설계)

  • Yu, Dong-Hun;Gang, Chan-Su
    • Journal of Korea Water Resources Association
    • /
    • v.31 no.5
    • /
    • pp.565-574
    • /
    • 1998
  • The friction factor distribution of commercial pipes vary according to the pipe type and size. The present paper developed the friction factor equations of power law by analyzing the data reported by Colebrook(1938). Generally, pipe design requires pump power, discharge or pipe diameter for each condition given. Yoo(1995b) has suggested the basic equations for the explicit design of uniformly rough pipe and Yoo and Kang(1996) have refined those equations for the cases of uniformly rough pipe on a sloping bed with a pumping power. Furthermore Yoo and Kang(1997) have studied the design of commercial pipe for a general case. The approach gives relatively accurate solutions, but the equations obtained are rather complicated. In the present study two types of power law are developed for the friction factor of commercial pipe, and explicit forms of equations are generated by applying the power law friction factor equations for the simple design of commercial pipes.

  • PDF

Enhanced Coulomb Counting Method for State-of-Charge Estimation of Lithium-ion Batteries based on Peukert's Law and Coulombic Efficiency

  • Xie, Jiale;Ma, Jiachen;Bai, Kun
    • Journal of Power Electronics
    • /
    • v.18 no.3
    • /
    • pp.910-922
    • /
    • 2018
  • Conventional battery state-of-charge (SoC) estimation methods either involve sophisticated models or consume considerable computational resource. This study constructs an enhanced coulomb counting method (Ah method) for the SoC estimation of lithium-ion batteries (LiBs) by expanding the Peukert equation for the discharging process and incorporating the Coulombic efficiency for the charging process. Both the rate- and temperature-dependence of battery capacity are encompassed. An SoC mapping approach is also devised for initial SoC determination and Ah method correction. The charge counting performance at different sampling frequencies is analyzed experimentally and theoretically. To achieve a favorable compromise between sampling frequency and accumulation accuracy, a frequency-adjustable current sampling solution is developed. Experiments under the augmented urban dynamometer driving schedule cycles at different temperatures are conducted on two LiBs of different chemistries. Results verify the effectiveness and generalization ability of the proposed SoC estimation method.

Vibration analysis of different material distributions of functionally graded microbeam

  • Tlidji, Youcef;Zidour, Mohamed;Draiche, Kadda;Safa, Abdelkader;Bourada, Mohamed;Tounsi, Abdelouahed;Bousahla, Abdelmoumen Anis;Mahmoud, S.R.
    • Structural Engineering and Mechanics
    • /
    • v.69 no.6
    • /
    • pp.637-649
    • /
    • 2019
  • In the current research paper, a quasi-3D beam theory is developed for free vibration analysis of functionally graded microbeams. The volume fractions of metal and ceramic are assumed to be distributed through a beam thickness by three functions, power function, symmetric power function and sigmoid law distribution. The modified coupled stress theory is used to incorporate size dependency of micobeam. The equation of motion is derived by using Hamilton's principle, however, Navier type solution method is used to obtain frequencies. Numerical results show the effects of the function distribution, power index and material scale parameter on fundamental frequencies of microbeams. This model provides designers with guidance to select the proper distributions and functions.

Time-Optimal Power Control for KMRR Using Reactivity Constraint Method (반응도 제한법에 의한 KMRR의 시간 최적 출력 제어)

  • Lee, Byung-Ill;Kim, Myung-Hyun
    • Nuclear Engineering and Technology
    • /
    • v.23 no.1
    • /
    • pp.30-40
    • /
    • 1991
  • For automatic power control of KMRR, a new method, Reactivity Constraint Method, is applied for time optimal control. This method limits the net reactivity to the amount that can be offset by instantaneous control rod action. The reactivity to be constrained for the constant reactor period should be obtained by the dynamic period equation. A new formulation of the dynamic period equation for 2-point kinetics model is presented. A methematical controller model was applied to the plant simulator, KMRSIM to test this control law. The performance test showed that reactivity constraint approach is also a reliable means for reactor power change control.

  • PDF

The Effect of Intrinsic Motivation on Individuals' Performance and the Mediating Role of Job Stress in the Republic of Korea Army

  • Yongjoon Park;Sunggyun Shin
    • International Journal of Advanced Culture Technology
    • /
    • v.12 no.1
    • /
    • pp.144-157
    • /
    • 2024
  • This study examines the relationship between intrinsic motivation and individuals' performance in the Republic of Korea armed forces and explores whether job stress mediates the relationship between intrinsic motivation and individuals' performance. The research questions are: (1) Does intrinsic motivation influence individual performance in military organizations? (2) Does job stress impact individual performance? and (3) Does job stress mediate the relationship between intrinsic motivation and individual performance? The study utilizes data collected from a 350 soldiers survey in the Special Forces Brigade and Special Assault Commando Regiment of the Republic of Korea's Army. We use structural equation modeling (SEM) to explore the mediation role among intrinsic motivation, job stress, and individuals' performance. Research findings suggest that intrinsic motivation negatively impacts job stress. We also find that job stress has a positive effect on firearm skills. Moreover, the study reveals that the relationship between intrinsic motivation and firearm skills is partially mediated by job stress.