• Title/Summary/Keyword: power hyperbola

Search Result 3, Processing Time 0.018 seconds

Simulation on Hydraulic Control Characteristics of Regulator System in Bent-Axis Type Piston Pump

  • Kim, Jong Ki;Oh, Seok Hyung;Jung, Jae Youn
    • KSTLE International Journal
    • /
    • v.1 no.2
    • /
    • pp.101-106
    • /
    • 2000
  • Variable displacement axial piston pumps are widely used for raising the energy level of the fluid in hydraulic systems. And the regulator is the device which regulates the discharge flow of the piston pump by controlling the swivel angle. The regulator receives the hydraulic pilot pressure and controls the pump output flow depending on the machine load and engine speed. This work deals with constant power control (horsepower control) in the design of a regulator by using a bent-axis type piston pump. In order to effectively use engine power, we must keep the horsepower from the engine to the pump constant. Therefore the regulator operates the constant power control. As a result, optimum power usage is obtained by accurately following the power hyperbola. This study focused on developing a simulation model of a regulator. First, the governing equations of the regulator are derived, and analysis is performed by computer simulation, which can identify significant parameters of regulator. As a result, the variation of the swivel angle, flow rate, hyperbolic curve, inner leakage and responsibility are simulated, and significant parameters of a regulator are identified.

  • PDF

On Characteristics of Regulator System in Hydraulic Piston Pump (유압 피스톤 펌프 레귤레이터 시스템 특성 연구)

  • 여명구;김종기;정재연
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 2000.11a
    • /
    • pp.266-272
    • /
    • 2000
  • The importance of variable displacement piston pump is recently increasing in industrial applications, as it is widely used for raising the energy level of the fluid in hydraulic system. The regulator is the device that controls the pump output flow depending on the machine load and engine speed, and that regulates the discharge flow of the piston pump by controlling the swivel angel. This work deals with constant power control of a regulator system in bent-axis type piston pump. In order to use engine power effectively, it is important to keep the horsepower from the engine to the pump constant. Therefore, optimum power usage is obtained by accurately following the power hyperbola. First, the governing equations of the regulator are derived, and analysis is performed by numerical simulation in which significant parameters of regulator are identified. Also, we designed and manufactured the prototype of the constant power control regulator for experiments. The experimental results show the responsibility and pressure-flowrate characteristics and these are compared with the theoretical analysis. As the result, it is confirmed that the characteristics of the designed regulator correspond to the numerical simulation.

  • PDF

Sub-Bottom Profile Analysis Using Dual Frequency Prototype 15/100 KHz (이중 주파수에 의한 천해 천부지층의 분해력과 투과력에 관한 사고)

  • Kim, So-Ku
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.5 no.2
    • /
    • pp.143-150
    • /
    • 1993
  • Shallow sub-bottom reflection recorders are obtained using dual frequency (15/100 KHz). The main goal of this study is to enhance the resolving power and penetration for the sub-bottom reflection of the sub-marine seismic exploration. The Fresnel zones of spherical waves for the near-field are of great importance to reach the high resoluton. In case a target to detects than the Fresnel radius, a diffraction hyperbola on the recorder is observed. A larger attenuation of sand makes less penetration than the smaller attenuation of silt and clay. It is found that the selective frequency as well as the seismic energy generation is the most important factors for sub-marine exploration. This technique of using dual frequency sub-marine exploration may be applied to detect the sub-bottom sludge soil, ocean contamination and marine archaeological relics.

  • PDF