• Title/Summary/Keyword: power conversion

Search Result 2,847, Processing Time 0.029 seconds

An Improved Control Method for Power Conversion System under a Weak Grid by the Adoption of Virtual Resistors

  • Gao, Ning;Sang, Shun;Li, Rui;Cai, Xu
    • Journal of Power Electronics
    • /
    • v.17 no.3
    • /
    • pp.756-765
    • /
    • 2017
  • The control of the power conversion system (PCS) in a battery energy storage system has a challenge due to the existence of grid impedance. This paper studies an impedance model of an LCL-based PCS in the d-q domain. The feature of a PCS connected to a weak grid is unveiled by use of an impedance model and a generalized Nyquist criterion. It is shown that the interaction between grid impedance and the PCS destabilizes the cascaded system in certain cases. Therefore, this paper proposes a novel control method that adopts virtual resistors to overcome this issue. The improvement in the control loop leads the PCS to a more stable condition than the conventional method. Impedance measurement is implemented to verify the correctness of the theoretical analysis. Experimental results obtained from a down-scaled prototype indicate that the proposed control method can improve the performance of the PCS under a weak grid.

A Novel Power Frequency Changer Based on Utility AC Connected Half-Bridge One Stage High Frequency AC Conversion Principle

  • Saha Bishwajit;Koh Kang-Hoon;Kwon Soon-Kurl;Lee Hyun-Woo;Nakaoka Mutsuo
    • Proceedings of the KIPE Conference
    • /
    • 2006.06a
    • /
    • pp.203-205
    • /
    • 2006
  • This paper presents a novel soft-switching PWM utility frequency AC to high frequency AC power conversion circuit incorporating boost-half-bridge inverter topology, which is more suitable and acceptable for cost effective consumer induction heating applications. The operating principle and the operation modes are presented using the switching mode and the operating voltage and current waveforms. The performances of this high-frequency inverter using the latest IGBTs are illustrated, which includes high frequency power regulation and actual efficiency characteristics based on zero voltage soft switching (ZVS) operation ranges and the power dissipation as compared with those of the previously developed high-frequency inverter. In addition, a dual mode control scheme of this high frequency inverter based on asymmetrical pulse width modulation (PWM) and pulse density modulation (PDM) control scheme is discussed in this paper in order to extend the soft switching operation ranges and to improve the power conversion efficiency at the low power settings. The power converter practical effectiveness is substantially proved based on experimental results from practical design example.

  • PDF

Key Technical Challenges for Integrated Sensors in Power Electronics and Motor Drives

  • Lorenz, Robert D.
    • KIEE International Transaction on Electrical Machinery and Energy Conversion Systems
    • /
    • v.4B no.4
    • /
    • pp.170-179
    • /
    • 2004
  • The paper presents technical issues which integrated sensors must address to be implemented in the next generation of power electronics and motor drives. The underlying goal of the sensor integration will be to improve reliability of power conversion systems while making the power converter and motor drive become the primary source of diagnostic signals for the application. The paper focuses on design methodologies that will allow this integration to succeed in meeting the technical demands for both reliability and for application level diagnostics.

Improved Switching Frequency in Delta Modulated Inverter for UPS Applications

  • Sodaban, C.;Tipsuwanporn, V.;Thepsatorn, P.;Piyarat, W.;Witheephanich, K.
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.986-989
    • /
    • 2004
  • The concept and results of a simple constant switching frequency delta modulation scheme suitable for DC-AC power conversion in uninterruptable power supply (UPS) applications are presented. Unlike the traditional delta modulation scheme, the scheme has a well defined harmonic spectrum, resulting in a simple filter design and reduced radio interference.

  • PDF

Research on the Development of the Supercritical CO2 Dual Brayton Cycle (초임계 이산화탄소 이중 브레이튼 사이클 개발 연구)

  • Baik, Young-Jin;Na, Sun Ik;Cho, Junhyun;Shin, Hyung-Ki;Lee, Gilbong
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.40 no.10
    • /
    • pp.673-679
    • /
    • 2016
  • Because of the growing interest in supercritical carbon dioxide power cycle technology owing to its potential enhancement in compactness and efficiency, supercritical carbon dioxide cycles have been studied in the fields of nuclear power, concentrated solar power (CSP), and fossil fuel power generation. This study introduces the current status of the research project on the supercritical carbon dioxide power cycle by Korea Institute of Energy Research (KIER). During the first phase of the project, the un-recuperated supercritical Brayton cycle test loop was built and tested. In phase two, researchers are designing and building a supercritical carbon dioxide dual Brayton cycle, which utilizes two turbines and two recuperators. Under the simulation condition considered in this study, it was confirmed that the design parameter has an optimal value for maximizing the net power in the supercritical carbon dioxide dual cycle.

A Single Transistor-Level Direct-Conversion Mixer for Low-Voltage Low-Power Multi-band Radios

  • Choi, Byoung-Gun;Hyun, Seok-Bong;Tak, Geum-Young;Lee, Hee-Tae;Park, Seong-Su;Park, Chul-Soon
    • ETRI Journal
    • /
    • v.27 no.5
    • /
    • pp.579-584
    • /
    • 2005
  • A CMOS direct-conversion mixer with a single transistor-level topology is proposed in this paper. Since the single transistor-level topology needs smaller supply voltage than the conventional Gilbert-cell topology, the proposed mixer structure is suitable for a low power and highly integrated RF system-on-a-chip (SoC). The proposed direct-conversion mixer is designed for the multi-band ultra-wideband (UWB) system covering from 3 to 7 GHz. The conversion gain and input P1dB of the mixer are about 3 dB and -10 dBm, respectively, with multi-band RF signals. The mixer consumes 4.3 mA under a 1.8 V supply voltage.

  • PDF

Performance Analysis of Ocean Thermal Energy Conversion on Working Fluid Classification (작동유체에 따른 온도차발전사이클의 성능 해석)

  • Lee, Ho-Saeng;Moon, Jung-Hyun;Kim, Hyeon-Ju
    • Journal of Power System Engineering
    • /
    • v.20 no.2
    • /
    • pp.79-84
    • /
    • 2016
  • The thermodynamic performance of ocean thermal energy conversion with 1 kg/s geothermal water flow rate as a heat source was evaluated to obtain the basic data for the optimal design of cycle with respect to the classification of the working fluid. The basic thermodynamic model for cycle is rankine cycle and the geothermal water and deep seawater were adapted for the heat source of evaporator and condenser, respectively. R245fa, R134a are better to use as a working fluid than others in view of the use of geothermal water. It is important to select the proper working fluid to operate the ocean thermal energy conversion. So, this paper can be used as the basic data for the design of ocean thermal energy conversion with geothermal water and deep seawater.

PSCAD/EMTDC BASED MODELING AND ANALYSIS OF A GRID-CONNECTED VARIABLE SPEED WIND ENERGY CONVERSION SCHEME (계통연계형 가변속 풍력발전방식의 PSCAD/EMTDC 모의 및 해석)

  • 김슬기;김응상
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.52 no.8
    • /
    • pp.413-419
    • /
    • 2003
  • The paper presents a simulation model and analysis of a grid-connected variable speed wind energy conversion scheme (VSWECS) using the PSCAD/EMTDC software. The modeled system uses a variable speed drive, a fixed pitch angle, a synchronous generator as a wind generator and an AC-DC-AC conversion scheme, which facilitates the wind generation to efficiently operate under varying wind speed while connected to the distribution network. The power output of the WECS is controlled by the AC-DC-AC conversion scheme, the objective of which is to capture the maximum active power under varying wind conditions and to keep the voltage magnitude of the terminal bus at a specific level. Aerodynamic models are applied for a wind turbine model. An simulation analysis of the scheme in terms of its responding to wind variations is also presented.

The characteristics of Resonant class ${\phi}_2$ Inverter for short range wireless power transmission (근거리 무선전력전송용 공진형 Class ${\phi}_2$ 인버터 동작 특성)

  • Yang, Hae-Youl;Park, Jae-Hyun;Kim, Chang-Sun
    • Proceedings of the KIEE Conference
    • /
    • 2011.07a
    • /
    • pp.13-14
    • /
    • 2011
  • The power conversion converter for driving the wireless power transfer system is can be into the two part of the DC power conversion rectifier and the high frequency dc-ac power conversion inverter. In this paper, The operating characteristics of the Class-${\Phi}_2$ resonant inverter have been investigated through by simulation and by experiment. It can be switched at a high frequency without the switching losses and the harmonics are reduced effectively due to the input LC filter. Its switching frequency is 1MHz and the input voltage is 96V which is the output voltage of LLC resonant converter. And its output peak voltage is 170V. The resonant inverter module operated at the commercial power source of 220V was built. And also the electromagnetic coupled resonance coils were designed for wireless power transfer with a 1MHz operating frequency. As a experimental result, the wireless power transmission was confirmed and it is varified the validity of the experiment.

  • PDF

A Protection Circuit for the Power Supply of a Gas Discharge Lamp

  • Kim, Ho-Sung;Kim, Jong-Hyun;Baek, Ju-Won;Yoo, Dong-Wook;Jung, Hye-Man;Kim, Hee-Je
    • Journal of Power Electronics
    • /
    • v.10 no.6
    • /
    • pp.777-783
    • /
    • 2010
  • In order to drive gas discharge lamps, DC-AC converters with a LCC resonant tank, whose output voltage is adjusted by a variable frequency control are frequently used. However, when they are activated by varying the operating frequency, converters are frequently damaged by unstable operation, due to the rising and falling of the operating frequency near the resonant frequency. To solve this problem, a simple protection circuit for the power supply of a gas discharge lamp is proposed in this paper. This circuit senses the primary current of the main transformer. Using this protection circuit, the operating frequency of the lamp driving inverter system is kept close to and on the right side of the resonant frequency and the inverter is always operated in the ZVS condition. The resulting stable variable frequency operation allows various gas discharge lamps to be tested without the risk of damaging the main switches, because the protection circuit can protect the power MOSFETs of bridge converters from abnormal conditions. The validity and effectiveness of the proposed protection circuit are verified through the experimental results.