• Title/Summary/Keyword: powder of resin

Search Result 287, Processing Time 0.028 seconds

Adhesive Strength and Setting Shrinkage of UP Polymer Mortar Intermixed with Waste Rubber Powder (폐고무분말을 혼입한 UP 폴리머모르타르의 경화수축 및 부착강도)

  • Yeon, Kyu-Seok;Jin, Nan-Ji;Choi, Jong-Yun;Beck, Jong-Man
    • Proceedings of the Korean Society of Agricultural Engineers Conference
    • /
    • 2003.10a
    • /
    • pp.383-386
    • /
    • 2003
  • In this study, the MMA-modified paste mixed waste rubber powder, which has a small elastic modulus and a large modification, was produced by using the soft unsaturated polyester resin(UP) as a binder. Then the adhesive properties according to the matrices in both underwater and air-dry conditions and the hardening shrinkage according to the contents of shrinkage reducing agent(SRA) and of MMA were surveyed. The experimental results show that, regardless of humidity of matrices the adhesive strength of polymer concrete was larger than cement concrete. the adhesive strength of MMA content of 20% was larger than MMA content of 30%. regardless of matrix materials the adhesive strength in water condition were $20{\sim}30%$ comparing with the air-dry condition. The case of MMA content of 20% showed the largest adhesive strength. In the hardening shrinkage experiment, the hardening shrinkage reduced as MMA and SRA contents increased, and the decrease of the hardening shrinkage by SRA was larger.

  • PDF

Effect of Fillers on the Mechanical and Thermal Properties of Glass/Novolac Composites (충전재의 종류에 따른 유리/노볼락 복합재료의 기계적 및 열적 성질 연구)

  • Lee, Soo;Lee, In-Kyu;Park, Sang-Hee
    • Journal of the Korean Applied Science and Technology
    • /
    • v.25 no.1
    • /
    • pp.15-22
    • /
    • 2008
  • The effects of fillers on the mechanical and thermal properties of glass/novolac composites have been studied. The matrix polymer and reinforcement were novolac type phenolic resin and milled glass fiber, respectively. Three different fillers, such as calcium carbonate, aluminum oxide, and wood powder were used for glass fiber reinforced plastic(GFRP) manufacture. Gravity, moisture content, tensile and flexural strength were measured to analyze the mechanical properties of GFRP and the final composites was burned in the electronic furnace at $1000^{\circ}C$ to confirm thermal properties GFRP containing aluminium oxide shows the highest thermal stability with 32% of weight loss at $1000^{\circ}C$ for one hour. GFRP containing calcium carbonate shows the maximum flexural strength (146 MPa), but that containing wood powder dose the highest tensile strength (65 MPa). Conclusively, we found that the characteristics of final composites strongly depend on several factors, such as types of materials, contents and chemical affinity of fillers. Therefore, it is very important to set up the combination of fillers for GFRP manufacturing to improve both mechanical and thermal properties at the same time.

Changes in Mechanical and Electrical Properties as a Function of Unidirectional Pressure Changes in Preforming While Isostatic Pressing for Graphite Block Fabrication (흑연블록 제조를 위한 등압성형 시 일축가압 예비성형의 압력변화에 따른 기계적 및 전기적 특성 변화)

  • Tae-Sub Byun;Dong-Pyo Jeon;Sang-Hye Lee;Sang-Woo Lee;Jae-Seung Roh
    • Journal of Powder Materials
    • /
    • v.30 no.1
    • /
    • pp.35-40
    • /
    • 2023
  • In this study, a graphite block is fabricated using artificial graphite processing byproduct and phenolic resin as raw materials. Mechanical and electrical property changes are confirmed due to the preforming method. After fabricating preforms at 50, 100, and 150 MPa, CIP molding at 150 MPa is followed by heat treatment to prepare a graphite block. 150UP-CIP shows a 12.9% reduction in porosity compared with the 150 MPa preform. As the porosity is decreased, the bulk density, flexural strength, and shore hardness are increased by 14.9%, 102.4%, and 13.7%, respectively; and the deviation of density and electrical resistivity are decreased by 51.9% and 34.1%, respectively. Therefore, as the preforming pressure increases, the porosity decreases, and the electrical and mechanical properties improve.

A Study on Plywood Glue Extender from Bark and Particle Board Sander Dust (수피(樹皮) 및 파티클보드 폐기분말(廢棄粉末)을 이용(利用)한 합판(合板)의 증량(增量)에 관(關)한 연구(硏究))

  • Lee, Phil-Woo;Park, Heon
    • Journal of the Korean Wood Science and Technology
    • /
    • v.11 no.1
    • /
    • pp.12-17
    • /
    • 1983
  • The shear strength of plywoods using Douglus-fir bark powder and particlebard sander dust(PSD), abandoned materials in plywood and particleboard industries, as extender to UF resin, was compared with that of plywoods using wheat flour. Extenders were mixed at the rate of 0%, 5%, 10%, 20%, and 30% of UF resin weight. In obtained results, the dry shear strength of all extended plywoods was highest at extending ratio 5% and the wet shear strength was highest at no extending and 5%. Douglas-fir bark powder-and PSD-extended plywoods had as high dry and wet shear strength as wheat flour-extended plywoods up to extending ratio 10% and 20% respectively. But at 300%, wheat flour-extended plywoods had higher shear strength. Douglas-fir bark powder and PSD size should have been reduced (enough to pass through 325 mesh screen) in order to develop the satisfactory mixing, spreading and plywood bond quality. But in this study the powders to pass through 100 mesh screen were used.

  • PDF

Effect of ceramic powder addition on the insulating properties of polymer layer prepared by dip coating method

  • Kim, S.Y.;Lee, J.B.;Kwon, B.G.;Hong, G.W.
    • Progress in Superconductivity and Cryogenics
    • /
    • v.16 no.1
    • /
    • pp.14-18
    • /
    • 2014
  • The mechanical, electrical and thermal characteristics of insulating materials may significantly affect the performance and reliability of electrical devices using superconductors. General method to provide insulating layer between coated conductors is wrapping coated conductor with Kapton tape. But uniform and compact wrapping without failure or delamination in whole coverage for long length conductor is not a simple task and need careful control. Coating of insulating layer directly on coated conductor is desirable for providing compact insulating layer rather than wrapping insulating layers around conductor. Ceramic added polymer has been widely used as an insulating material for electric machine because of its good electrical insulating properties as well as excellent heat resistance and fairy good mechanical properties. The insulating layer of coated conductor should have high breakdown voltage and possesses suitable mechanical strength and maintain adhesiveness at the cryogenic temperature where it is used and withstand stress from thermal cycling. The insulating and mechanical properties of polymer can be improved by adding functional filler. In this study, insulating layer has been made by adding ceramic particles such as $SiO_2$ to a polymer resin. The size, amount and morphology of added ceramic powder was controlled and their effect on dielectric property of the final composite was measured and discussed for optimum composite fabrication.

A Study on the Taro Extension of UF and PF Resin Bonding Plywoods (요소(尿素) 및 석탄산수지(石炭酸樹脂) 합판(合板)의 토란증량(土卵增量)에 관(關)한 연구(硏究))

  • Lee, Phil Woo;Bae, Young Soo
    • Journal of Korean Society of Forest Science
    • /
    • v.57 no.1
    • /
    • pp.32-38
    • /
    • 1982
  • This study was carried out to examine the possibility to replace imported wheat flour with taro. Taro and wheat flour were used for the extenders after oven drying($100{\pm}3^{\circ}C$)and pulverized into 80-100mesh minute powder by laboratory willey mill. Urea- and phenol-formaldehyde resin adhesives were used for plywood manufacture, and the extending materials mixed with the extension at the ratio of 10, 20, 30, and 50% to each resin solution. The results obtained at this study were summarized as follows; 1) In dry and wet shear strength of urea-formaldehyde resin adhesive, taro showed very excellent bonding strength compared with wheat flour in all extending ratio. Therefore taro showed the possibility that be usable to taro in place of wheat flour. 2) In dry and wet shear strength of phenol-formaldehyde resin adhesive, in general, wheat flour showed higher bonding strength than taro. But in dry shear strength, taro showed higher shear strength than wheat flour in 30 and 50% extension.

  • PDF

Interconnection Technology Based on InSn Solder for Flexible Display Applications

  • Choi, Kwang-Seong;Lee, Haksun;Bae, Hyun-Cheol;Eom, Yong-Sung;Lee, Jin Ho
    • ETRI Journal
    • /
    • v.37 no.2
    • /
    • pp.387-394
    • /
    • 2015
  • A novel interconnection technology based on a 52InSn solder was developed for flexible display applications. The display industry is currently trying to develop a flexible display, and one of the crucial technologies for the implementation of a flexible display is to reduce the bonding process temperature to less than $150^{\circ}C$. InSn solder interconnection technology is proposed herein to reduce the electrical contact resistance and concurrently achieve a process temperature of less than $150^{\circ}C$. A solder bump maker (SBM) and fluxing underfill were developed for these purposes. SBM is a novel bumping material, and it is a mixture of a resin system and InSn solder powder. A maskless screen printing process was also developed using an SBM to reduce the cost of the bumping process. Fluxing underfill plays the role of a flux and an underfill concurrently to simplify the bonding process compared to a conventional flip-chip bonding using a capillary underfill material. Using an SBM and fluxing underfill, a $20{\mu}m$ pitch InSn solder SoP array on a glass substrate was successfully formed using a maskless screen printing process, and two glass substrates were bonded at $130^{\circ}C$.

A study of the tensile bond strength between Polyetherketoneketone (PEKK) and various veneered denture base resin (Polyetherketoneketone (PEKK)과 다양한 의치상용 전장 레진 간의 인장결합강도에 관한 연구)

  • Park, Yeon-Hee;Seo, Jae-Min;Lee, Jung-Jin
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.60 no.3
    • /
    • pp.231-238
    • /
    • 2022
  • Purpose. This study aimed to investigate the effect of different veneering methods on the tensile bond strength between polyetherketoneketone (PEKK) and denture base resins. Materials and methods. A total of 80 PEKK T-shaped specimens were fabricated and the primer (Visio.link) was applied after airborne-particle abrasion with 110 ㎛ alumina oxide powder. According to the veneering method, the specimens were divided into four groups (n = 20) to be veneered with the gingival colored packable photopolymerized composite resin (SR Adoro); flowable photopolymerized composite resin, (Crea.lign); heat-polymerized resin (Vertex); and self-polymerized resin (ProBase Cold). Each group was divided into two subgroups (n = 10) according to the artificial thermal aging. After the tensile bond strength measurement via universal testing machine, the fracture sections of all specimens were observed. Two-way ANOVA and Tukey's HSD post hoc test were used for the statistical analysis (α = .05). Results. The results of the two-way ANOVA showed statistically significant differences in the tensile bond strength according to the veneering method and artificial thermal aging of denture base resins (P<.001). The highest tensile bond strength showed in the packable photopolymerized resin group before and after the artificial thermal aging. The lowest tensile bond strength showed in the heat-polymerized resin group. The mixed and adhesive fracture showed in all groups. Conclusion. The veneering method and artificial thermal aging can influence in the tensile bond strength between the resin and PEKK. The artificial thermal aging can reduce the tensile bond strength.

Dispersion Characteristics of Ag Pastes and Properties of Screen-printed Source-drain Electrodes for OTFTs (Ag Pastes의 분산 특성 및 스크린 인쇄된 OTFTs용 전극 물성)

  • Lee, Mi-Young;Nam, Su-Yong
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.21 no.9
    • /
    • pp.835-843
    • /
    • 2008
  • We have fabricated the source-drain electrodes for OTFTs by screen printing method and manufactured Ag pastes as conductive paste. To obtain excellent conductivity and screen-printability of Ag pastes, the dispersion characteristics of Ag pastes prepared from two types of acryl resins with different molecular structures and Ag powder treated with caprylic acid, triethanol amine and dodecane thiol as surfactant respectively were investigated. The Ag pastes containing Ag powder treated with dodecane thiol having thiol as anchor group or AA4123 with carboxyl group(COOH) of hydrophilic group as binder resin exhibited excellent dispersity. But, Ag pastes(CA-41, TA-41, DT-41) prepared from AA4123 fabricated the insulating layer since the strong interaction between surface of Ag powder and carboxyl group(COOH) of AA4123 interfered with the formation of conduction path among Ag powders. The viscosity behavior of Ag pastes exhibited shear-thinning flow in the high shear rate range and the pastes with bad dispersion characteristic demonstrated higher shear-thinning index than those with good dispersity due to the weak flocculated network structure. The output curve of OTFT device with a channel length of 107 ${\mu}m$ using screen-printed S-D electrodes from DT-30 showed good saturation behavior and no significant contact resistance. And this device exhibited a saturation mobility of $4.0{\times}10^{-3}$ $cm^2/Vs$, on/off current ratio of about $10^5$ and a threshold voltage of about 0.7 V.

A Study of Bi-Axial Stretching Process for the PTFE Membrane(I) (이축연신 PTFE 막 제조 공정에 관한 연구(I))

  • Shin, Hong-Chul;Kim, Sung-Chul;Cho, Ur-Ryong
    • Elastomers and Composites
    • /
    • v.42 no.2
    • /
    • pp.86-92
    • /
    • 2007
  • A few of polytetrafluoroethylene(PTFE) membranes and PTFE fine powders were analyzed to chooce an optimum resin. The bi-axial stretching process was developed to set up the foundation of the preparation process and control the pore size and porosity of PTFE membrane. The pretreatment of PTFE fine powder used in the preparation process for PTFE was needed. The mixing of additives, the ripening of mixture, paste extrusion process of ripening powder, calendering process and the bi-axial process were conducted for controlling pore size, porosity and thckness of membrane. The aftertreatment which strengthened the mechanical properties was necessary. The control of pore size and porosity of the membrane were determined. The ratio of PTFE fine powder and additives at the paste extrusion process, the ripening time, the ripening temperature and the parameters of temperature and pressure at the paste extrusion process were optimized.