• Title/Summary/Keyword: powder mixture

Search Result 1,164, Processing Time 0.029 seconds

Effects of the Powder Agglomeration on Vibrating Minimum Ignition Energy Measurement System for Powder (진동형 분진 최소착화에너지측정장치에서 분진 응집현상이 미치는 영향)

  • ;;;;;;M. Yamaguma;T. Kodama;W.L.Cheung
    • Journal of the Korean Society of Safety
    • /
    • v.14 no.3
    • /
    • pp.48-53
    • /
    • 1999
  • It is widely recognized that Hartmann tube for measuring the minimum ignition energy(MIE) of powder. But It requires long time and operational skills for measuring. As a variety of new fine powders are being produced day by day in industry, Japen has been developing a measurement system which employs a new method to create a dust/air mixture in a miniature combustion box. In this system, by vibration, the powder is successively fed downward through a hopper made up of metal mesh, and then it is formed into a thin, certain-like, dust/air mixture. With this new apparatus, three types of powder-Lycopodium, Anthraquinone, and Polyacry-lonitrile-were tested and the data of MIE were compared with those of a conventional apparatus (the Hartmann tube). Two of them agreed satisfactory, but the other, Anthraquinone, showed quite different values. It is guessed that the agglomerations of the powder particles appear because of particle shapes, static-charge and humidity.

  • PDF

Synthesis and Characteristics of W-l5wt%Cu Nanocomposite Powder by Oxide Reduction (산화물환원에 의한 W-15wt%Cu 나노복합분말의 합성과 특성)

  • 윤의식
    • Journal of Powder Materials
    • /
    • v.4 no.4
    • /
    • pp.304-309
    • /
    • 1997
  • The synthesis of W-l5wt%Cu nanocomposite powder by hydrogen reduction of ball milled W-Cu oxide mixture was investigated in terms of powder characteristics such as particle size, mixing homogeneity and micropore structure. It is found that the micropores in the ball milled oxide (2-50 nm in size) act as an effective removal path of water vapor, followed by the formation of dry atmosphere at reaction zone. Such thermodynamic condition enhances the nucleation of W phase but suppresses the growth process, being in favor of the formation of W nanoparticles (about 21 nm in size). In addition, the superior mixing homogeneity of starting oxide mixture turned out to Play a significant role for forming extraordinary chemical homogeneity of W-l5wt%Cu nanocomposite powder.

  • PDF

Characteristics of Nanostructured $WO_3-CuO$ Powder Mixture Produced by Ball Milling

  • Azimi, Hossein;Ahmadi, Eltefat;Hadavi, S.M.Mehdi
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2006.09b
    • /
    • pp.1298-1299
    • /
    • 2006
  • In the present work, the influence of the ball-milling time, milling atmosphere and weight ratio of ball to powder on characteristics of $WO_3-CuO$ was studied. Results show that, the grain sizes of the $WO_3$ and CuO in the ball-milled powder mixture were significantly decreased with increasing the milling time. Those of each oxide ball-milled in Argon and Hexane atmosphere for 30 and 20 hour were about 98 and 84 nm, respectively. After milling of 20 hour in Hexane as PCA, the powder had a homogeneously mixed structure and the average size of $WO_3-CuO$ powders was determined to about 230nm.

  • PDF

Carbothermal Reduction of Spray Dried Titanium-Cobalt-Oxygen Based Oxide Powder by Solid Carbon (분무건조법에 의해 제조된 Ti-Co-O계 산화물 분말의 고체 탄소에 의한 환원/침탄)

  • 이길근;문창민;김병기
    • Journal of Powder Materials
    • /
    • v.11 no.1
    • /
    • pp.28-33
    • /
    • 2004
  • In the present study, the focus is on the analysis of carbothermal reduction of the titanium-cobalt-oxygen based oxide powder by solid carbon for the optimizing synthesis process of ultra fined TiC/Co composite powder. The titanium-cobalt-oxygen based oxide powder was prepared by the combination of the spray drying and desalting processes using the titanium dioxide powder and cobalt nitrate as the raw materials. The titanium-cobalt-oxygen based oxide powder was mixed with carbon black, and then this mixture was carbothermally reduced under a flowing argon atmosphere. The changes in the phase structure and thermal gravity of the mixture during carbothermal reduction were analysed using XRD and TGA. The synthesized titanium-cobalt-oxygen based oxide powder has a mixture of $TiO_2$ and $CoTiO_3$. This oxide powder was transformed to a mixed state of titanium car-bide and cobalt by solid carbon through four steps of carbothermal reduction steps with increasing temperature; reduction of $CoTiO_3$ to $TiO_2$ and Co, reduction of $TiO_2$, to the magneli phase($Ti_nO_{2n-1}$, n>3), reduction of the mag-neli phase($Ti_nO_{2n-1}$, n>3) to the $Ti_nO_{2n-1}$(2$\leq$n$\leq$3) phases, and reduction and carburization of the $Ti_nO_{2n-1}$(2$\leq$n$\leq$3) phases to titanium carbide.

Reaction-Bonded Al2O3 Ceramics Using Oxidation of Al Alloy Powder

  • Lee, Hyun-Kwuon
    • Korean Journal of Materials Research
    • /
    • v.24 no.5
    • /
    • pp.236-242
    • /
    • 2014
  • Fabrication of reaction-bonded $Al_2O_3$ (RBAO) ceramics using Al-Zn-Mg alloy powder was studied in order to improve traditional RBAO ceramic processing using Al powder. The influence on reaction-bonding and microstructure, as well as on physical and mechanical properties, of the particulate characteristics of the $Al_2O_3$-Al alloy powder mixtures after milling, was revealed. Variation of the particulate characteristics of this $Al_2O_3$-Al alloy powder mixture with milling time was reported previously. To start, the $Al_2O_3$-Al alloy powder mixture was milled, reaction-bonded, post-sintered, and characterized. During reaction-bonding of the $Al_2O_3$-Al alloy powder mixture compacts, oxidation of the Al alloy took place in two stages, that is, there was solid- and liquid-state oxidation of the Al alloy. The solid-state oxidation exhibited strong dependence on the density of surface defects on the Al-alloy particles formed during milling. Higher milling efficiency resulted in less participation of the Al alloy in reaction-bonding. This was because of its consumption by chemical reactions during milling, and subsequent powder handling, and could be rather harmful in the case of over-milling. In contrast to very little dependence of oxidation of the Al alloy on its particle size after milling, the relative density, microstructure, and flexural strength were strongly dependent on particle size after milling (i.e., on milling efficiency). The relative density and 4-point flexural strength of the RBAO ceramics in this study were ~98% and ~365 MPa, respectively, after post-sintering at $1,600^{\circ}C$.

Synthesis of TiC/Co Composite Powder by the Carbothermal Reduction Process (환원/침탄공정에 의한 TiC/Co 복합분말 합성)

  • Lee, Gil-Geun;Ha, Gook-Hyun
    • Journal of Powder Materials
    • /
    • v.16 no.5
    • /
    • pp.310-315
    • /
    • 2009
  • Ultra-fine TiC/Co composite powder was synthesized by the carbothermal reduction process without wet chemical processing. The starting powder was prepared by milling of titanium dioxide and cobalt oxalate powders followed by subsequent calcination to have a target composition of TiC-15 wt.%Co. The prepared oxide powder was mixed again with carbon black, and this mixture was then heat-treated under flowing argon atmosphere. The changes in the phase, mass and particle size of the mixture during heat treatment were investigated using XRD, TG-DTA and SEM. The synthesized oxide powder after heat treatment at 700$^{\circ}C$ has a mixed phase of TiO$_2$ and CoTiO$_3$ phases. This composite oxide powder was carbothermally reduced to TiC/Co composite powder by the solid carbon. The synthesized TiC/Co composite powder at 1300$^{\circ}C$ for 9 hours has particle size of under about 0.4 $\mu$m.

Effect of Si/α-Si3N4 Ratio on the Shape of Silicon Nitride Particles Produced by SHS Method

  • Kim, Min-Sung;Park, Dong-Soo;Han, Byung-Dong;Kim, Hai-Doo;Park, Chan
    • Journal of the Korean Ceramic Society
    • /
    • v.39 no.3
    • /
    • pp.217-221
    • /
    • 2002
  • Si and ${\alpha}-Si_3N_4$ powder mixtures added with 3 wt% $Y_2O_3$ were reacted under 5 MPa nitrogen pressure. The reaction products contained ${\alpha}-Si_3N_4$ particles with elongated shapes. Length and width of the elongated grains were the maximum when the starting powder mixture of 50 wt% Si - 47 wt% ${\alpha}-Si_3N_4$ and 3 wt% $Y_2O_3$ was used. Aspect ratio of the elongated grains were between 4.4 and 5. When the starting powder mixture contained 70 wt% Si, large particles with irregular shapes appeared. Meanwhile, the reaction did not proceed when the starting powder mixture contained 30 wt% Si and less. The SHS product was easy to crush and the elongated particles obtained from the starting powder mixtures of 40 wt% Si - 57 wt% ${\alpha}-Si_3N_4$ - 3 wt% $Y_2O_3$ and 50 wt% Si - 47 wt% ${\alpha}-Si_3N_4$ - 3 wt% $Y_2O_3$ were good candidates for the seeds.