• Title/Summary/Keyword: powder metallurgy process

Search Result 1,207, Processing Time 0.028 seconds

Prevention of Crack Formation by Changing Tool Shapes in Powder Compaction Process

  • Pang, Y.C.;Lee, H.C.
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2006.09a
    • /
    • pp.30-31
    • /
    • 2006
  • In a multi-action tooling system, which is usually used for the powder compaction process to fabricate the complex multilevel parts, crack formation is crucially detrimental and should be avoided. Among various process factors, tool shape is an important factor to prevent the crack formation during powder compaction process. In this work, the effects of different tool shapes were investigated through the experimental oberservation of pore distribution in real products and the finite element analysis of residual stresses. The results were interpreted based on non-uniform powder density in the compacted parts.

  • PDF

Sinter-hardening Process of P/M Steels and its Recent Developments

  • Yi, Jianhong;Ye, Tuming;Peng, Yuandong;Xia, Qinglin;Wang, Hongzhong
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2006.09a
    • /
    • pp.303-304
    • /
    • 2006
  • The mechanical properties of ferrous powder metallurgy (P/M) materials are directly related to their microstructure. Ferrous P/M materials with sufficient hardenability will develop microstructures containing significant percentages of martensite in the as-sintered condition. Recently, sinter-hardening has developed into a highly cost effective production method through hardened P/M parts without the need for additional heat-treatments. This paper reviews the advances of sinter-hardening as well as some key processing parameters such as sintering temperature, cooling rate, tempering required to produce high quality sinter-hardened components. Specific topics including effect of alloying elements, alloying methods, and the Characterization and observation of microstructure are discussed.

  • PDF

Application of Pseud-superplastic PM Process to Ti-Al Intermetallic Compound for MEMS Parts

  • Miyano, Naoki;Kumagai, Yusuke;Yoshimoto, Masayoshi;Nishimura, Yuta;Tanaka, Shigeo;Ameyama, Kei
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2006.09b
    • /
    • pp.1292-1293
    • /
    • 2006
  • A non-equilibrium powder metallurgy processing such as an MA/SPS (Mechanical Alloying / Spark Plasma Sintering) process is examined in a Ti-48moll%Al. TiAl intermetallic compound is a potential light-weight/high-temperature structural material. One of the major problems, however, limiting the practical use of the material is its poor workability. From this point, the powder metallurgy (PM) processing route has been attractive alternative of the conventional processing for such material The MA/SPS process is able to apply to a LIGA process. Optimization of the pseudo-superplasticity enables to fabricate micro-parts made of fine grained ceramics composites of TiAl by the LIGA process.

  • PDF