• Title/Summary/Keyword: powder metal

Search Result 1,487, Processing Time 0.035 seconds

Fabrication of $MgB_2$ tape with metal powder addition (금속분말이 첨가된 $MgB_2$ 선재의 제조 및 특성)

  • Ko, Jae-Woong;Yoo, Jai-Moo;Kim, Young-Kuk;Chung, Kook-Chae;Yoo, Sang-Im;Wang, Xio Lin;Dou, Shi Xue
    • Progress in Superconductivity and Cryogenics
    • /
    • v.8 no.1
    • /
    • pp.1-4
    • /
    • 2006
  • The $MgB_2$ tapes with several metal powder addition were fabricated by PIT method with or without heat treatment. The $J_c$ value of $5.600A/cm^2$ and $16.000A/cm^2$ at 4.2 K and 5 T were obtained for the $MgB_2$ tape and 10 vol % of Cu added $MgB_2$ tape without heat treatment respectively. The $J_c$ value of $8.000A/cm^2$ and $35,000A/cm^2$ at 4.2 K and 5 T were obtained for the $MgB_2$ tape and 10 vol. % of Al added $MgB_2$ tape with heat treatment, respectively. The $J_c-B$ curve shows enhancement in $J_c$ under magnetic field. which suggests enhancement in workability and grain connectivity with several metal powder addition.

Preparation of Cathode Materials for Lithium Rechargeable Batteries using Transition Metals Recycled from Li(Ni1-x-yCoxMny)O2 Secondary Battery Scraps (Li(Ni1-x-yCoxMny)O2계 이차전지 공정 스크랩으로부터 회수한 전이금속을 활용한 리튬이차전지 양극재 제조)

  • Lee, Jae-Won;Kim, Dae Weon;Jang, Seong Tae
    • Journal of Powder Materials
    • /
    • v.21 no.2
    • /
    • pp.131-136
    • /
    • 2014
  • Cathode materials and their precursors are prepared with transition metal solutions recycled from the the waste lithium-ion batteries containing NCM (nickel-cobalt-manganese) cathodes by a $H_2$ and C-reduction process. The recycled transition metal sulfate solutions are used in a co-precipitation process in a CSTR reactor to obtain the transition metal hydroxide. The NCM cathode materials (Ni:Mn:Co=5:3:2) are prepared from the transition metal hydroxide by calcining with lithium carbonate. X-ray diffraction and scanning electron microscopy analyses show that the cathode material has a layered structure and particle size of about 10 ${\mu}m$. The cathode materials also exhibited a capacity of about 160 mAh/g with a retention rate of 93~96% after 100 cycles.

Optical Design of a 2-kW-Level Laser Head for Metal 3D-Printing Systems (금속 3D 프린팅 시스템 구축을 위한 2 kW 급 레이저헤드 광학설계)

  • Lee, Joohyung
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.21 no.1
    • /
    • pp.90-94
    • /
    • 2022
  • Metal 3D-printing technology enables the manufacture of complex features or internal structures, which is not possible in fabrication by conventional cutting methods. The most successful types of metal 3D printing have been powder bed diffusion and directed energy deposition, which use laser heads exploiting high-power laser sintering metal powder. In this study, a cost-effective optical design was proposed for a 2-kW-level fiber laser head. Only two commercial lenses, a beamsplitter and a window, are used in the laser head, satisfying the technological requirements. According to the optical design, the spot size was 2.54 mm, and the stand-off distance from the laser head was 295 mm. The intensity distribution was Gaussian. Thus, smooth power sintering was possible without any laser spot marks. Monte Carlo analysis was employed to verify the consistency of the optical performance under conventional assembly tolerance.

Characteristic of Laser Cladding Process with High Viscosity Bronze Powder and Al-alloy (고점성 청동분말을 이용한 알루미늄 합금의 레이저 클래딩 특성)

  • 오동수;전병철;김재도
    • Proceedings of the Korean Society of Laser Processing Conference
    • /
    • 2001.05a
    • /
    • pp.31-34
    • /
    • 2001
  • Laser cladding Processing allows rapid transfer of heat to the material being minimum conduction into base metal. The effects of CO$_2$ laser cladding with high powder were investigated. High viscosity bronze powder consists of bronze powder used at a high temperature. The material has a high viscosity So that it can be substrate. Therefore. Laser cladding can be processed on a curved or slope surface. CO$_2$ laser cladding was designed It consists of the high viscosity bronze powder the shielding gas system and the preheating system The high viscosity powder properly at 0.3g/s and 0.50g/s. Because of the metallic bond between bronze per the hardness of dilution layer was suddenly increased. Experimental as results viscosity mixed powder can be a useful cladding material.

  • PDF

Synthesis and Characteristics of FePt Nanopowder by Chemical Vapor Condensation Process

  • Yu, Ji-Hun;Lee, Dong-Won;Kim, Byoung-Kee;Jang, Tae-Suk
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2006.09b
    • /
    • pp.1196-1197
    • /
    • 2006
  • FePt binary-alloy nanopowder has been successfully synthesized by chemical vapor condensation process with two metal organic precursors, i.e., iron pentacarbonyl and platinum acetylacetonate. Average particle size of the powder was less than 50 nm with very narrow size distribution, revealing high dispersion capability. Characteristics of the powder could be controlled by changing process parameters such as reaction temperature, chamber pressure, as well as gas flow rate. Magnetic properties of the synthesized FePt nanopowder were investigated and analyzed in terms of the powder characteristics.

  • PDF

Research on Powder Metallurgy Technology in Fusion Materials in China

  • Ge, Chang-Chun;Zhou, Zhang-Jian;Du, Juan;Song, Shu-Xiang
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2006.09b
    • /
    • pp.896-897
    • /
    • 2006
  • In the viewpoint of engineering, materials problem is a key problem, which determines whether the exploitation of fusion energy will be success. The most important class of fusion materials is plasma-facing materials (PFM). W, as high Z high melting-point metal is one of the most important candidate materials due to its high plasma erosion resistance. Improving the ductility of W and W based alloy, lowering its ductile-brittleness transition temperature for meeting the requirements of fusion application is an important task. In this paper, severalpowder meatllurgy methods of fabricating W and W based materials are being investigated.

  • PDF

Primary Research on Theoretical Performance and Powder Supply Characteristics of Powder Rocket

  • Deng, Zhe;Hu, Chun-bo;Hu, Song-qi;Xu, Yi-hua
    • International Journal of Aerospace System Engineering
    • /
    • v.2 no.2
    • /
    • pp.1-5
    • /
    • 2015
  • The powder propellant rocket which uses micron-sized particles as fuel is storable and costly. Functions like thrust control and multiple-ignition can be realized by changing powder mass flow rate. In this paper, we discuss the theoretical performance of bi-propellant and mono-propellant powder rocket. When used as the fluidization gas, helium can improve specific impulse dramatically. The stability of the powder feeding device is preliminarily quantified through metal/N2O powder rocket hot fire tests.

Acid-insoluble Substances in Reduced Iron Powder from Ores

  • Wang, Chonglin;Zhang, Chunguang
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2006.09a
    • /
    • pp.173-174
    • /
    • 2006
  • X-ray analysis on iron ores and reduced iron powders revealed that the main acid-insoluble substances were hexagonal and tetragonal quartz, another substances were sillimanite, alumina-silicate, an unnamed zeolite, all contained Si and Al. Their particle size was in the range of $3{\sim}7\;{\mu}m$. Statistics analysis showed that the AIC for high-grade magnetite powder was $(0.130{\pm}0.010)%$) during the latest five months. The predicting value for reduced iron powder should be 0.179%. However, the testing value for reduced iron powder was $(0.192{\pm}0.014)%$. The limited difference of 0.013% might imply rare pollution coming from the reduction and milling processes. The most important step for control AIC should be the separation process of iron ore powders.

  • PDF

Synthesis of Ultrafine Zr Based Alloy Powder by Plasma Arc Discharge Process

  • Lee, Gil-Geun;Park, Je-Shin;Kim, Won-Baek
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2006.09a
    • /
    • pp.420-421
    • /
    • 2006
  • In the present study, ultrafined Zr-V-Fe based alloy powder prepared by a plasma arc discharge process with changing process parameters. The chemical composition of synthesized powder was strongly influenced by the process parameters, especially the hydrogen volume fraction in the powder synthesis atmosphere. The synthesized powder had an average particle size of 50 nm. The synthesized Zr-V-Fe based particles had a shell-core structure composed of metal in the core and oxidse in the shell.

  • PDF

Effect of Sn Addition on Microstructure of Al Alloy Powder for Brazing Process (브레이징용 Al 합금 분말의 미세조직에 미치는 Sn 함량의 영향)

  • Kim, Yong-Ho;Yoo, Hyo-Sang;Na, Sang-Su;Son, Hyeon-Taek
    • Journal of Powder Materials
    • /
    • v.27 no.2
    • /
    • pp.139-145
    • /
    • 2020
  • The powder manufacturing process using the gas atomizer process is easy for mass production, has a fine powder particle size, and has excellent mechanical properties compared to the existing casting process, so it can be applied to various industries such as automobiles, electronic devices, aviation, and 3D printers. In this study, a modified A4032-xSn (x = 0, 1, 3, 5, and 10 wt.%) alloy with low melting point properties is investigated. After maintaining an argon (Ar) gas atmosphere, the main crucible is tilted; containing molten metal at 1,000℃ by melting the master alloy at a high frequency, and Ar gas is sprayed at 10 bar gas pressure after the molten metal inflow to the tundish crucible, which is maintained at 800℃. The manufactured powder is measured using a particle size analyzer, and FESEM is used to observe the shape and surface of the alloy powder. DSC is performed to investigate the change in shape, according to the melting point and temperature change. The microstructure of added tin (Sn) was observed by heat treatment at 575℃ for 10 min. As the content of Sn increased, the volume fraction increased to 1.1, 3.1, 6.4, and 10.9%.