• 제목/요약/키워드: potentiostatic polarization

검색결과 41건 처리시간 0.026초

Al-4.06Mg-0.74Mn 합금의 해수 내 캐비테이션 환경에 따른 정전위 특성 평가 (Evaluation on Potentiostatic Characteristics of Al-4.06Mg-0.74Mn Alloy with Cavitation Environment in Seawater)

  • 이승준;한민수;장석기;김성종
    • 한국표면공학회지
    • /
    • 제45권6호
    • /
    • pp.272-277
    • /
    • 2012
  • The hull of a fast sailing aluminium ship are generally prone to erosion owing to the impact of seawater. At this time, synergistic effects of the erosion and the corrosion by aggressive ions such as chlorides tend to aggravate the damage. There have been various attempts, including selection of erosion-resistant materials, cathodic protection and addition of corrosion inhibitors, to overcome damage by erosion or corrosion under marine environments. These approaches, however, have limits on identifying the damage mechanism clearly, because they depend on analogical interpretation by correlating two damage behaviors after the individual studies are assessed. In this research, it was devised a hybrid testing apparatus that integrates electrochemical corrosion test and cavitation test, and thus the erosion-corrosion behavior by cavitation was investigated more reliably. As a result, the slightest damage was observed at the potentials between -1.6 V and -1.5 V. This is considered to be due to a reflection or counterbalancing effect caused by collision of the cavitation cavities and the hydrogen gas formed by activation polarization.

양극산화 처리된 5083 알루미늄 합금의 해수 내 유속변화에 따른 전기화학적 손상 특성 (Electrochemical Damage Characteristics of Anodized 5083 Aluminum Alloy with Flow Rate in Seawater)

  • 박일초;김성종
    • 한국표면공학회지
    • /
    • 제49권4호
    • /
    • pp.349-356
    • /
    • 2016
  • In this study, electrochemical damage behaviors with flow rate were investigated for anodized 5083 aluminum alloy in seawater. As the results of anodic polarization experiments and potentiostatic experiments at +1.0 V (vs. SSCE), the non-flow condition presented largely damaged surface resulting from a tendency of local pitting damage. Under various flow rate conditions, however, less surface damages under the application of anodic potential was obtained which is attributed to no accumulation of $H^+$ and $Cl^-$ ions on the surface. On the other hand, the results of the potentiostatic experiments at -1.0 V (vs. SSCE) with flow rate showed that anodized 5083 aluminum alloys could achieve the effective cathodic protection by low cathodic protection current density less than $2.61{\times}10^{-7}A/cm^2$ even under high flow rate of 1 m/s.

MMO(Ti/Ru) 코팅된 타이타늄의 고분자 전해질 연료전지 양극환경에서의 전기화학적 거동 (Electrochemical Characteristics of MMO(Ti/Ru)-Coated Titanium in a Cathode Environment of Polymer Electrolyte Membrane Fuel Cell)

  • 허호성;김성종
    • Corrosion Science and Technology
    • /
    • 제21권5호
    • /
    • pp.340-347
    • /
    • 2022
  • In this research, mixed metal oxide (TiO2, RuO2) coating was applied to grade 1 titanium as a bipolar plate for polymer electrolyte membrane fuel cell (PEMFC). Electrochemical experiments were carried out in an aqueous solution of pH 3 (H2SO4 + 0.1 ppm HF, 80 ℃) determined by DoE. The air was bubbled to simulate a cathode environment. Potentiodynamic polarization test revealed that corrosion current densities of the titanium substrate and MMO-coated specimen were 0.180 µA/cm2 and 4.381 µA/cm2, respectively. There was no active peak. After potentiostatic experiment, current densities of the titanium substrate and the MMO-coated specimen were 0.19 µA/cm2 and 1.05 µA/cm2, respectively. As a result of observing the surface before and after the potentiostatic experiment, cracked dried clay structures were observed without corrosion damage. Both the titanium substrate and the MMO-coated specimen could not satisfy the interfacial contact resistance suggested by the DoE. Thus, further research is needed before they could be applied as bipolar plates.

Al-Cu-Li-Mg-Ag-Zr합금의 시효에 따른 전기화학적 분극 거동과 공식특성 (Pitting Characteristics and Electrochemical Polarization Behaviors in Al-Cu-Si-Mg-Ag-Zr Alloys with Ageing)

  • 민병철;정동석;손태원;조현기
    • 열처리공학회지
    • /
    • 제9권2호
    • /
    • pp.103-111
    • /
    • 1996
  • In this paper, we studied on both electrochemical polarization behaviors and pitting characteristics of ultra high strength Al-Cu-Li-Mg-Ag-Zr alloys(named C1 and C2) and 2090 alloy according to their treatments in the deaerated 3.5% NaCl, using by the potentiodynamic and the potentiostatic method, SEM micrograph and surface roughness including depth of pitting attack. With the cyclic polarization curves, the hysteresis of the C1 and C2 alloys appeared more remarkably than that of the 2090 alloy, because of precipitation microstructural difference between C1, C2 alloys and 2090 alloy. In the pitting experiments, the correlations between pitting growth and aging conditions were analyzed with the SEM micrograph and measurement of the pit depth.

  • PDF

ALBC3 합금의 수소과전압 현상을 이용한 캐비테이션과 전기화학적 특성 (Cavitation and Electrochemical Characteristics Using Hydrogen Overpotential Method for ALBC3 Alloy)

  • 박재철;이승준;김성종
    • 한국표면공학회지
    • /
    • 제44권6호
    • /
    • pp.277-283
    • /
    • 2011
  • In this study, the cavitation test and electrochemical experiments were conducted for ALBC3(Cu-Al) alloy that has an excellent corrosion resistance and cavitation characteristic in sea water. Based on the ASTMG32 regulation, the cavitation test was performed with the cavitation and cavitation erosion tester using piezoelectric effect. The electrochemical characteristics are evaluated with potentiostatic experiments in activation polarization potential range. As a result, cavitation damage is increased proportionally to temperature and time at $30{\mu}m$ amplitude. It is appeared that acceleration period in weight loss presented over 6 hours under the cavitation environment in sea water. In addition, corrosion damages were observed at the potential range of -3.2~-1.4 V as the result of potensiostatic experiments during 12 hours in activation polarization potential range.

The Effect of Imidazole and 2-Methyl Imidazole on the Corrosion of Mild Steel in Phosphoric Acid Solution

  • Chandrasekara, V.;Kannan, K.;Natesan, M.
    • Corrosion Science and Technology
    • /
    • 제4권5호
    • /
    • pp.191-200
    • /
    • 2005
  • Two azole compounds viz., Imidazole (IM) and 2-Methylimidazole (2-MIM) were studied to investigate their inhibiting action on corrosion of mild steel in phosphoric acid ($H_3PO_4$) solution by mass loss and polarization techniques at 302K-333K. It has been found that the inhibition efficiency of the all inhibitors increased with increase in inhibitor concentration and decreases with increasing temperature and also with increase in acid concentrations. The inhibition efficiency of these compounds showed very good inhibition efficiency. At 0.5% of IM and 2-MIM in 1N and 5N phosphoric acid solution at 302K to 333K for 5 hours immersion period, the inhibition efficiency of 2-Methylimidazole found to be higher than Imidazole. The adsorption of these compounds on the mild steel surface from the acids has been found to obey Tempkin's adsorption isotherm. The values of activation energy ($E{\alpha}$) and free energy of adsorption (${\Delta}G{\alpha}ds$) were also calculated. The plots of log $W_f$ against time (days) at 302K give straight line which suggested that it obeys first order kinetics and also calculate the rate constant k and half life time $t_{1/2}$. Surface was analyzed by SEM and FITR spectroscopy.

Ti-Pd계 합금의 미세조직변화에 따른 부식거동 (Corrosion Behavior of Ti-Pd System Alloys by Microstructural changes)

  • 차성수;곽동주;남상용
    • 대한치과기공학회지
    • /
    • 제30권2호
    • /
    • pp.9-16
    • /
    • 2008
  • The surface microstructural changes, mechanical properties and corrosion resistance of Ti-Pd alloys for dental biomaterials have been investigated. Ti, Ti-Pd alloys were melted in arc furnace and the corrosion resistance of Ti-Pd alloys was evaluated by anodic polarization test. The surface microstructural changes and mechanical properties of Ti-Pd alloys were analysed by scanning electron microscope and Vickers micro-hardness tester. The vickers hardnees of pure Ti improved by addition of Pd but Ti-25Pd alloy showed decreasing compared with Ti-15Pd. And anodic polarization and potentiostatic test were conducted in 5% HCl to quantify the resistance to corrosion with the addition of Pd, There was no significant difference in corrosion resistance between pure Ti, Ti-5Pd and Ti-15Pd alloy. However, Ti-25Pd alloy showed decreasing compared with pure Ti in corrosion resistance. From these results, it was concluded that newly formulated Ti-15Pd experimental alloy have adequate hardness and high corrosion resistance, and this alloy is promising candidate for a successful dental casting alloy.

  • PDF

The Effect of Temperature on the Corrosion of Mild Steel in H3PO4 Containing Halides and Sulfate Ions

  • Chandrasekaran, V.;Kannan, K.;Natesan, M.
    • Corrosion Science and Technology
    • /
    • 제4권1호
    • /
    • pp.8-14
    • /
    • 2005
  • The corrosion behaviour of mild steel in phosphoric acid solution in the presence and absence of pollutants viz. Chloride, Fluoride and Sulfate ions at 302K-333K was studied using mass loss and potentiostatic polarization methods. The addition of chloride and sulfate ions inhibits the mild steel corrosion in phosphoric acid while fluoride ions stimulate it. The effect of temperature on the corrosion behaviour of mild steel indicated that inhibition of chloride and sulfate ions decreased with increasing temperature. The adsorption of these ions (Chloride and sulfate) on the mild steel surface in acid has been found to obey Langmuir adsorption isotherm. The values of activation energy (Ea) and free energy of adsorption ($\Delta$) indicated physical adsorption of these ions (chloride and sulfate) on the mild steel surface. The plot of $logW_{f}$ against time (days) at 302K gives a straight line, which suggested that it obeys first order kinetics and also calculate the rate constant k and half-life time $t_{1/2}$.

산성 용액에서 고크롬 주철의 전면 부식 거동 (General Corrosion Behavior of High Chromium Cast Iron in an Acid Solution)

  • 이준섭;이준형;오준석;이재현
    • Corrosion Science and Technology
    • /
    • 제20권6호
    • /
    • pp.367-372
    • /
    • 2021
  • The effect of carbon addition on the general corrosion behavior of high-chromium cast iron (HCCI) was studied by a scanning electron microscope with energy dispersive spectroscopy (SEM-EDS) or electron back-scattered diffraction (EBSD), or electrochemical polarization techniques in 0.1 mol dm-3 H2SO4 + 0.05 mol dm-3 HCl at room temperature. The addition of 2.1-2.8 wt% carbon to HCCI increased the fraction of eutectic austenite and eutectic carbide phases, while that of HCCI decreased the fraction of the primary austenitic phase. Potentiostatic polarization of the HCCI at -0.35 VSSCE or 0.0 VSSCE resulted in preferential general corrosion of the primary austenitic or eutectic austenitic phases, respectively. The decrease in corrosion current density and the shift in noble corrosion potential direction with increasing carbon content in the HCCI indicated that the fraction and the chemical composition of austenitic (primary and eutectic) and carbide phases were strongly related to the general corrosion behavior of the HCCI.

점 전극을 이용한 마이크로 전해가공 기구에 관한 연구 (A Study on the Mechanism of Micro-ECM by Use of Point Electrode Method)

  • 김봉규;전종업;박규열
    • 한국정밀공학회지
    • /
    • 제19권8호
    • /
    • pp.77-83
    • /
    • 2002
  • This research aimed at from the establishment of theory on micro electrochemical machining mechanism to the implementation of a practical fabrication system of micro parts. In detail, the mechanism of micro-ECM was investigated with potentiodynamic method and the optimal condition for micro-ECM was selected by voltage-current-time curve with potentiostatic method. From the experimental result, the micro part which has extremely fine surface could be fabricated by use of micro-ECM with point electrode method.