• Title/Summary/Keyword: potentiostat. nickel

Search Result 6, Processing Time 0.02 seconds

Electrochemistry Characterization of Nickel Using Ethanolamine Compound Additives (에탄올아민화합물 첨가에 대한 니켈의 전기화학적 특성)

  • Park, Keun-Ho
    • Journal of the Korean Applied Science and Technology
    • /
    • v.27 no.4
    • /
    • pp.531-538
    • /
    • 2010
  • The electrochemistry characterization of metal is important in many industrial applications. In this study, we investigated the C-V diagrams related to the electrochemistry characterization of nickel. We determined electrochemical measurement by using cyclic voltammetry with a three electrode system. A measuring range was reduced from initial potential to -1350mV, continuously oxidized to 1650mV and measured to the initial point. The scan rate were 100, 150, 200 and 200mV/s. As a result, the C-V characterization of nickel using ethanolamine and ethylethanolamine inhibitor appeared irreversible process caused by the oxidation current from the cyclic voltammogram. After adding ethanolamine compound additive, adsorption film constituted, and the passive phenomena happened. According to the results by cyclic voltammetry method, it was revealed that the effect of the electrochemistry characterization of nickel depends on ethanolamine structure interaction to adsorption complex.

Surface roughness changes caused by the galvanic corrosion between a titanium abutment and base metal alloy (티타늄 지대주와 비귀금속 합금사이의 갈바닉 부식에 의한 표면 거칠기 변화 평가)

  • Lee, Jung-Jin;Song, Kwang-Yeob;Ahn, Seung-Keun;Park, Ju-Mi
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.49 no.1
    • /
    • pp.65-72
    • /
    • 2011
  • Purpose: The purpose of this study was to evaluate the level of electro-chemical corrosion and surface roughness change for the cases of Ti abutment connected to restoration made of base metal alloys. Materials and methods: It was hypothesized that Ni-Cr alloys in different compositions possess different corrosion resistances, and thus the specimens ($13{\times}13{\times}1.5\;mm$) in this study were fabricated with 3 different types of metal alloys, commonly used for metal ceramic restorations. The electrochemical characteristics were evaluated with potentiostat (Parstat 2273A) and the level of surface roughness change was observed with surface roughness tester. Paired t-test was used to compare mean average surface roughness (Ra) changes of each specimen group. Results: All specimens made of nickel-chromium based alloys, average surface roughness was increased significantly (P < .05). Among them, the Ni-Cr-Be alloy ($0.016{\pm}.007\;{\mu}m$) had the largest change of roughness followed by Ni-Cr ($0.012{\pm}.003\;{\mu}m$) and Ni-Cr-Ti ($0.012{\pm}.002\;{\mu}m$) alloy. There was no significant changes in surface roughness between each metal alloys after corrosion. Conclusion: In the case of galvanic couples of Ti in contact with all specimens made of nickel-chromium based alloys, average surface roughness was increased.

Electrochemistry Characterization of Metal Using Corrosion Inhibitors Containing Amide Functional Group (아미드 작용기를 가진 부식억제제를 사용한 금속의 전기화학적 특성)

  • Park, Keun-Ho
    • Journal of the Korean Applied Science and Technology
    • /
    • v.28 no.1
    • /
    • pp.48-56
    • /
    • 2011
  • In this study, we investigated the C-V diagrams and metal surface related to the electrochemistry characterization of metal(nickel, SUS-304). We determined electrochemical measurement by using cyclic voltammetry with a three-electrode system. A measuring range was reduced from initial potential to -1350mV, continuously oxidized to 1650 mV and measured to the initial point. The scan rate were 50, 100, 150, 200 and 250 mV/s. As a result, the C-V characterization of metal using N,N-dimethylacetamide and N,N-dimethylformamide inhibitors appeared irreversible process caused by the oxidation current from the cyclic voltammogram. After adding organic corrosion inhibitors, adsorption film constituted, and the passive phenomena happened. According to the results by cyclic voltammetry method, it was revealed that the addition of inhibitors containing amide functional group enhances the corrosion resistance properties.

Synthesis of the New 1,2-Dithiolene Metal Complexes[M$(BDDT)_2^-$] (M=Ni, Cu) and Their Electrode Structures

  • 전기원;Robert D. Bereman
    • Bulletin of the Korean Chemical Society
    • /
    • v.17 no.7
    • /
    • pp.612-616
    • /
    • 1996
  • The new 1,2-dithiolene, 1,4-butanediyldithioethylene-1,2-dithiolate (BDDT2-), has been isolated. In addition, new monoanionic bis-complexes with nickel and copper have been prepared and characterized. In order to investigate the detailed electronic structure of the metal complexes of the new ligand, BDDT2-, in terms of the oxidation state of the central metal ions, we have carried out molecular orbital (MO) calculations of Ni(BDDT)2-and Cu(BDDT)2- utilizing an Extended Huckel method. Cyclic voltammetry data for both complexes were obtained with a potentiostat. We have also compared these results to the previously synthesized Ni(PDDT)2-, Ni(DDDT)2-,Cu(PDDT)2-, and Cu(DDDT)2-.

Effect of the compacting additives on the Discharge Characteristics of the Negative Electrode for Ni-MH Battery (니켈-수소저장합금전지 음극의 방전특성에 미치는 성형첨가제의 영향)

  • Jung, Jae-Han;Lee, Han-Ho;Kim, Dong-Myung;Lee, Kee-Young;Lee, Jai-Young
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.6 no.2
    • /
    • pp.65-73
    • /
    • 1995
  • Negative electrode was prepared by mixing $Ti_{0.7}Zr_{0.3}Cr_{0.3}Mn_{0.3}V_{0.6}Ni_{0.8}$ alloy powder with copper or nickel powder and pressing in the air. The cycled electrodes were analyzed with SEM, potentiostat and electrochemical impedance spectroscopy. It was found that the Cu-compacted electrode showed better low temperature dischargeability and higher rate capability than Ni-compacted electrode. From SEM analysis of the cycled electrode compacted with copper powder, it was observed that the surface of MH particles was covered with copper grains and whisker precipitated from electrolyte after dissolution during cell test. It is found that the improved electrode characteristics are attributed to the copper layer on MH particles deposited by dissolution and precipitation(DP) process.

  • PDF

A Study on the Inhibition Effect of Metal Corrosion Using Organic Compound Containing an Amine Group (아민기를 가진 유기물을 사용한 금속의 부식억제효과)

  • Park, Keun-Ho
    • Journal of the Korean Applied Science and Technology
    • /
    • v.27 no.3
    • /
    • pp.361-369
    • /
    • 2010
  • A study on the corrosion inhibition of metals is important in many industrial applications (carbon steel, copper, aluminum, SUS 304, nickel). In this study, we investigated the C-V diagrams related to the surface corrosion of metals. It was observed through the SEM that the surface corrosion state of the various metals had the corrosion potential by the scan rate and the organic inhibitor containing an amine group. We determined to measure cyclic voltammetry using the three-electrode system. The measurement of oxidation and reduction ranged from -1350mV to 1650mV. The scan rate was 50, 100, 150, and 200mV/s. It turned out that the C-V characterization of SUS 304 was irreversible process caused by the oxidation current from the cyclic voltammogram. After adding organic inhibitors, the adsorption film was constituted, and the passive phenomena happened. As a result, it was revealed that the inhibition effect of metal corrosion depends on the molecular interaction, and the interaction has influence on the adsorption complex.