• 제목/요약/키워드: potential-induced degradation

검색결과 217건 처리시간 0.031초

Oxya chinensis sinuosa (OC) Extracts Protects ARPE-19 Cells against Oxidative Stress via Activation of the Mitogen-Activated Protein Kinases (MAPKs)/Nuclear Factor-κB (NF-κB) Pathway

  • Bong Sun Kim;Ra-Yeong Choi;Haeyong Kweon;Joon Ha Lee;In-Woo Kim;Minchul Seo
    • 한국축산식품학회지
    • /
    • 제44권3호
    • /
    • pp.699-709
    • /
    • 2024
  • Oxya chinensis sinuosa (OC) is a well-known edible insect. Several researches on the health benefits of OC consumption have been performed to date; however, their effect on eye health remains largely unknown. This study aimed to assess the protective effects of OC extracts on the oxidative stress on the retinal pigment epithelium (RPE) cells. Oxidative damage has been identified as one of the key regulatory factors in agerelated macular degeneration. H2O2-induced reactive oxygen species (ROS) production, a well-known oxidative stress factor, can cause cell death in retinal pigment epithelia cells. In this study, we found that three OC extracts effectively prevented H2O2-induced ROS production and subsequent death of ARPE-19 cells in a dose-dependent manner. In addition, the OC extracts inhibited the phosphorylation of mitogen-activated protein kinases including p38, JNK, and ERK. The OC extracts restored IκBα degradation induced by H2O2, indicating that OC extracts suppressed the activation of nuclear factorκB. Furthermore, the three OC extracts were shown to have antioxidant effects by upregulating the intracellular expression of key antioxidant proteins such as SOD, NQO, and HO-1. Here we demonstrated the antioxidant and anti-apoptotic effects of the OC extracts on ARPE-19, indicating their potential role in improving eye health. These results suggest that three OC extracts plays a critical role in oxidative stress-induced cell death protects in ARPE-19 cells.

Protective effects skin keratinocyte of Oenothera biennis on hydrogen peroxide-induced oxidative stress and cell death via Nrf2/Ho1 pathway.

  • Lee, Seung Young;Jung, Ji Young;Choi, Hee Won;Choi, Kyung Min;Jeong, Jin-Woo
    • 한국자원식물학회:학술대회논문집
    • /
    • 한국자원식물학회 2018년도 추계학술대회
    • /
    • pp.103-103
    • /
    • 2018
  • Oenothera biennis, commonly known as evening primrose, a potential source of natural bioactive substances: flavonoids, steroids, tannins, fatty acids and terpenoids responsible for a diverse range of pharmacological functions. However, whether extract prepared from aerial part of O. biennis (APOB) protects skin against oxidative stress remains unknown. To investigate the protective effects of APOB against oxidative stress-induced cellular damage and elucidated the underlying mechanisms in the HaCaT human skin keratinocytes. Our results revealed that treatment with APOB prior to hydrogen peroxide ($H_2O_2$) exposure significantly increased viability, and the highest DPPH radical-scavenging activities and reducing power of HaCaT cells. APOB also effectively attenuated H2O2-induced comet tail formation and inhibited the $H_2O_2$-induced phosphorylation levels of the histone ${\gamma}H2AX$, as well as the number of apoptotic bodies and Annexin V-positive cells. In addition, APOB exhibited scavenging activity against intracellular reactive oxygen species (ROS) accumulation and restored the mitochondrial membrane potential loss by $H_2O_2$. Moreover, $H_2O_2$ enhanced the cleavage of caspase-3 and degradation of poly (ADP-ribose)-polymerase (PARP), a typical substrate protein of activated caspase-3, as well as DNA fragmentation; however, these events were almost totally reversed by pretreatment with APOB. Furthermore, APOB increased the levels of heme oxygenase-1 (HO-1), which is a potent antioxidant enzyme, associated with the induction of nuclear factor-erythroid 2-related factor 2 (Nrf2). According to our data, APOB is able to protect HaCaT cells from $H_2O_2$-induced DNA damage and cell death through blocking cellular damage related to oxidative stress through a mechanism that would affect ROS elimination and activating the Nri2/HO-1 signaling pathway.

  • PDF

Auranofin Enhances Sulforaphane-Mediated Apoptosis in Hepatocellular Carcinoma Hep3B Cells through Inactivation of the PI3K/Akt Signaling Pathway

  • Hwangbo, Hyun;Kim, So Young;Lee, Hyesook;Park, Shin-Hyung;Hong, Su Hyun;Park, Cheol;Kim, Gi-Young;Leem, Sun-Hee;Hyun, Jin Won;Cheong, Jaehun;Choi, Yung Hyun
    • Biomolecules & Therapeutics
    • /
    • 제28권5호
    • /
    • pp.443-455
    • /
    • 2020
  • The thioredoxin (Trx) system plays critical roles in regulating intracellular redox levels and defending organisms against oxidative stress. Recent studies indicated that Trx reductase (TrxR) was overexpressed in various types of human cancer cells indicating that the Trx-TrxR system may be a potential target for anti-cancer drug development. This study investigated the synergistic effect of auranofin, a TrxR-specific inhibitor, on sulforaphane-mediated apoptotic cell death using Hep3B cells. The results showed that sulforaphane significantly enhanced auranofin-induced apoptosis by inhibiting TrxR activity and cell proliferation compared to either single treatment. The synergistic effect of sulforaphane and auranofin on apoptosis was evidenced by an increased annexin-V-positive cells and Sub-G1 cells. The induction of apoptosis by the combined treatment caused the loss of mitochondrial membrane potential (ΔΨm) and upregulation of Bax. In addition, the proteolytic activities of caspases (-3, -8, and -9) and the degradation of poly (ADP-ribose) polymerase, a substrate protein of activated caspase-3, were also higher in the combined treatment. Moreover, combined treatment induced excessive generation of reactive oxygen species (ROS). However, treatment with N-acetyl-L-cysteine, a ROS scavenger, reduced combined treatment-induced ROS production and apoptosis. Thereby, these results deduce that ROS played a pivotal role in apoptosis induced by auranofin and sulforaphane. Furthermore, apoptosis induced by auranofin and sulforaphane was significantly increased through inhibition of the phosphoinositide 3-kinase (PI3K)/Akt pathway. Taken together, the present study demonstrated that down-regulation of TrxR activity contributed to the synergistic effect of auranofin and sulforaphane on apoptosis through ROS production and inhibition of PI3K/Akt signaling pathway.

폐암세포주에서 NFκ 활성 억제를 통한 Proteasome 억제제 MG132의 TRAIL-유도성 Apoptosis 감작 효과 (The Proteasome Inhibitor MG132 Sensitizes Lung Cancer Cells to TRAIL-induced Apoptosis by Inhibiting NF-κ Activation)

  • 서필원;이계영
    • Tuberculosis and Respiratory Diseases
    • /
    • 제65권6호
    • /
    • pp.476-486
    • /
    • 2008
  • 연구배경: 정상세포는 보호되고 종양세포에 독성을 보인다고 알려진 TNF유전자족으로 새로이 확인된 TRAIL이 폐암세포에서 보이는 아포프토시스 효과를 확인하고, 아포프토시스로부터 세포를 보호하는 전사인자 $NF-{\kappa}B$가 TRAIL에 의하여 활성화 되는 정도를 평가하여 MG132의 $NF-{\kappa}B$활성억제가 TRAIL 유도성 아포프토시스를 감작시키는지를 확인하기 위하여 본 연구를 시행하였다. 방법: A549(wt p53) 및 NCI-H1299(null p53) 폐암세포주를 사용하였다. 세포독성 검사는 MTT assay를 이용하였고 아포프토시스는 Annexin V assay와 FACS 분석을 이용하였다. $NF-{\kappa}B$ 전사활성은 luciferase reporter gene assay를 이용하였고 $I{\kappa}B{\alpha}$ 분해는 western blot을 이용하였으며, TRAIL에 의해 활성화된 $NF-{\kappa}B$와 DNA 결합은 electromobility shift assay와 anti-p65 antibody를 이용한 supershift assay로 확인하였다. 결과: 1) TRAIL 100 ng/ml 농도에서 wild-type p53인 A549 폐암세포는 34.4%, p53 null인 NCI-H1299 폐암세포는 26.4%의 세포사를 관찰하였다. 2) Luciferase reporter gene assay로서 TRAIL에 의한 $NF-{\kappa}B$의 활성이 A549 $IgG{\kappa}B-luc$세포에서 2.45배 증가하고 NCI-H1299 $IgG{\kappa}B-luc$세포에서는 1.47배 증가함을 관찰하여 TRAIL에 의하여 $NF-{\kappa}B$가 활성화됨을 확인하였다. 3) MG132의 전처치로 TRAIL에 의한 $NF-{\kappa}B$의 활성이 A549 세포와 NCI-H1299 세포에서 각각 기저수준의 0.24, 0.21배로 강력히 억제되었다. 4) TRAIL단독으로 30% 전후의 세포독성이 MG132 전처치 후 TRAIL을 투여하면 두 세포주 모두에서 80% 이상의 세포독성이 관찰되어 MG132가 TRAIL유도성 아포프토시스에 감작효과가 있음을 확인하였다. 결론: 이상의 결과로 TRAIL에 상대적인 내성을 보이는 폐암세포주에서 MG132가 $NF-{\kappa}B$ 활성억제로서 TRAIL유도성 아포프토시스를 강화시키는 효과가 있음을 확인할 수 있었다. 따라서 본 연구는 향후 폐암치료에 있어서 TRAIL유도성 아포프토시스가 이용될 수 있는 가능성을 확인한 기초자료가 된다고 생각된다.

HepG2 인체 간암세포의 ROS 생성 및 ERK/Akt 신호전달 경로 조절을 통한 sanguinarine의 apoptosis 유도 (Sanguinarine Induces Apoptosis in Human Hepatocellular Carcinoma HepG2 Cells through the Generation of ROS and Modulation of Akt/ERK Signaling Pathways)

  • 황주영;최영현
    • 생명과학회지
    • /
    • 제25권9호
    • /
    • pp.984-992
    • /
    • 2015
  • 혈근초(Sanguinaria canadensis)에서 처음 분리된 sanguinarine은 항산화, 항암 및 면역 증강 등의 효능이 있는 것으로 알려진 alkaloid 계열 물질 중의 하나이다. 본 연구에서는 인체간암 HepG2 세포를 대상으로 sanguinarine의 apoptosis 유도 효능 및 관련 기전 해석을 시도하였다. 본 연구의 결과에 의하면 sanguinarine은 HepG2 간암세포의 증식을 처리 농도 의존적으로 억제하였으며, 이는 apoptosis 유도와 연관성이 있었다. Sanguinarine에 의한 apoptosis 유도에는 Fas 및 Bax의 발현 증가, 미토콘드리아에서 세포질로의 cytochrome c 유리 및 MMPl (Δψm)의 소실을 동반하였다. Sanguinarine은 intrinsic 및 extrinsic apoptosis pathway의 활성에 관여하는 initiator caspase인 caspase-9와 -8의 활성과 effector caspase인 caspase-3의 활성 및 PARP 단백질의 단편화를 유발하였다. Sanguinarine은 또한 ROS의 생성을 촉진시켰으며, N-acetylcysteine 처리에 의한 ROS의 생성을 차단하였을 경우, sanguinarine에 의한 apoptosis 효능이 완벽하게 차단되었다. 아울러 sanguinarine은 Akt의 인산화를 억제한 반면, MAPKs의 인산화를 촉진시켰으며, 특히 PI3K와 ERK의 선택적 억제제는 sanguinarine에 의한 HepG2 간암세포의 증식을 더욱 억제시켰다. 따라서 sanguinarine에 의한 HepG2 간암세포의 apoptosis 유발에는 ROS 생성 의존적인 intrinsic 및 extrinsic signaling pathway가 동시에 활성화되며, PI3K/Akt 및 ERK 신호계가 관여함을 알 수 있었다.

영지 약침액이 인체 위암 세포 성장억제 및 세포사멸 유발에 미치는 영향 (Induction of Apoptosis in AGS Human Gastric Cancer Cell by Ethanol Extract of Ganoderma lucidum)

  • 이병훈;김홍기;김철홍;윤현민;송춘호;장경전
    • Korean Journal of Acupuncture
    • /
    • 제29권2호
    • /
    • pp.271-289
    • /
    • 2012
  • Objectives : Ganoderma lucidum(Ganoderma or lingzhi, 靈芝) is a well-known oriental medical mushroom containing many bioactive compounds. The possible mechanisms involved in its effects on cancer cells remain to be elucidated. In the present study, the anti-proliferative and apoptotic activities of the G. lucidum ethanol extract(GEE), in AGS human gastric cancer cells were investigated. Methods : It was found that exposure of AGS cells to GEE resulted in the growth inhibition in a dose and time dependent manner as measured by trypan blue count and MTT assay. The anti-proliferative effect of GEE treatment in AGS cells was associated with morphological changes and formation of apoptotic bodies, and the flow cytometry analysis confirmed that GEE treatment increased the populations of apoptotic-sub G1 phase. Growth inhibition and apoptosis of AGS cells by GEE were connected with a concentration and time-dependent up-regulation of tumour necrosis factor-related apoptosis-inducing ligand(TRAIL) expression. Results : The levels of XIAP and survivin expression, members of IAP family proteins, were gradually down-regulated by GEE treatment. However other members of IAP family proteins such as cIAP-1 and cIAP-2 remained unchanged in GEE-treated AGS cells. GEE treatment also induced the proteolytic activation of caspase-3, caspase-8 and caspase-9 and a concomitant degradation of poly(ADP-ribose) polymerase(PARP) protein, a caspase-3 substrate protein. Additionally, GEE-induced apoptosis was associated with the inhibition of Akt activation in a concentration and time-dependent manner, and pre-treatment with LY294002, a phosphoinositide 3-kinase(PI3K)/Akt inhibitor, significantly increased GEE-induced growth inhibition and apoptosis. Conclusions : Therefore, G. lucidum has a strong potential as a therapeutic agent for preventing cancers such as gastric cancer cells.

The Root from Heracleum moellendorffii Exerts Anti-Inflammatory Activity via the Inhibition of NF-κB and MAPK Signaling Activation in LPS-Stimulated RAW264.7 Cells

  • Park, Su Bin;Kim, Ha Na;Kim, Jeong Dong;Park, Gwang Hun;Son, Ho-Jun;Eo, Hyun Ji;Song, Jeong Ho;Jeong, Hyung Jin;Jeong, Jin Boo
    • 한국자원식물학회:학술대회논문집
    • /
    • 한국자원식물학회 2018년도 추계학술대회
    • /
    • pp.96-96
    • /
    • 2018
  • Although the roots of Heracleum moellendorffii (HM-R) have been long treated for inflammatory human diseases, scientific evidence for the anti-inflammatory activity of HM-R is not sufficient. In this study, we investigated anti-inflammatory activity and mechanism of action of HM-R in LPS-stimulated RAW264.7 cells. HM-R blocked LPS-induced NO and PGE2 production, but not HM-L. HM-R inhibited LPS-induced overexpression of iNOS, COX-2, $IL-1{\beta}$ and IL-6 in RAW264.7 cells. HM-R inhibited LPS-induced $NF-{\kappa}B$ signaling activation through blocking $I{\kappa}B-{\alpha}$ degradation and p65 nuclear accumulation. In addition, HM-R inhibited MAPK signaling activation by attenuating the phosphorylation of ERK1/2, p38 and JNK. Furthermore, HM-R inhibited attenuated LPS-mediated overexpression of the osteoclast-specific factors such as NFATc1, cathepsin K, MCP-1 and TRAP. These results indicate that HM-R may exert anti-inflammatory activity by inhibiting $NF-{\kappa}B$ and MAPK signaling activation. From these findings, HM-R has potential to be a candidate for the development of chemopreventive or therapeutic agents for the inflammation and inflammatory diseases.

  • PDF

Evaluation of phlorofucofuroeckol-A isolated from Ecklonia cava (Phaeophyta) on anti-lipid peroxidation in vitro and in vivo

  • Lee, Ji-Hyeok;Ko, Ju-Young;Oh, Jae-Young;Kim, Eun-A;Kim, Chul-Young;Jeon, You-Jin
    • ALGAE
    • /
    • 제30권4호
    • /
    • pp.313-323
    • /
    • 2015
  • Lipid peroxidation means the oxidative degradation of lipids. The process from the cell membrane lipids in an organism is generated by free radicals, and result in cell damage. Phlorotannins, well-known marine brown algal polyphenols, have been utilized in functional food supplements as well as in medicine supplements to serve a variety of purposes. In this study, we assessed the potential anti-lipid peroxidation activity of phlorofucofuroeckol-A (PFF-A), one of the phlorotannins, isolated from Ecklonia cava by centrifugal partition chromatography in 2,2-azobis (2-amidinopropane) dihydrochloride (AAPH)-stimulated Vero cells and zebrafish system. PFF-A showed the strongest scavenging activity against alkyl radicals of all other reactive oxygen species (ROS) and exhibited a strong protective effect against ROS and a significantly strong inhibited of malondialdehyde in AAPH-stimulated Vero cells. The apoptotic bodies and pro-apoptotic proteins Bax and caspase-3, which were induced by AAPH, were strongly inhibited by PFF-A in a dose-dependent manner and expression of Bcl-xL, an anti-apoptotic protein, was induced. In the AAPH-stimulated zebrafish model, additionally PFF-A significantly inhibited ROS and cell death, as well as exhibited a strong protective effect against lipid peroxidation. Therefore, these results suggest that PFF-A has excellent protective effects against ROS and lipid peroxidation induced by AAPH in both an in vitro Vero cell model and an in vivo zebrafish model.

The Inhibition of Oxidative Stress by Chios Gum Mastic is Associated with Autophagy

  • Lee, Bo-Young;Lee, Kee-Hyun;Kim, In-Ryoung;Kim, Yong-Ho;Park, Hae-Ryoun;Park, Bong-Soo
    • International Journal of Oral Biology
    • /
    • 제39권2호
    • /
    • pp.65-73
    • /
    • 2014
  • Chios Gum Mastic (CGM) is a natural resin extracted from the leaves of Pistacia lentiscus, a plant endemic to the Greek island of Chios. It has been used by traditional healers, and it has antibacterial, antifungal properties, and therapeutic benefits for the skin. The CGM reduces the formation of dental plaque and bacterial growth in oral saliva, and recent studies have demonstrated the role of antioxidant activity of CGM. Although CGM has been widely investigated, its protective effect against oxidative-damage to keratinocytes, as well as the relationship between CGM and autophagy, has not been investigated. The aim of this study was to assess the protective effect of CGM against $H_2O_2$-induced oxidative stress and to evaluate the autophagic features induced by CGM in human keratinocytes. The pretreatment with CGM significantly reduced apoptosis in $H_2O_2$-exposed HaCaT cells. It promoted the degradation of caspase-3, caspase-8, and caspase-9; and it induced the formation of the processed PARP. The treatment with CGM caused an increase in vesicle formation compared to control group. The level of p62 was reduced and the conversion of LC3-I to LC3-II was increased in CGM treated HaCaT cells. Also, the treatment with CGM increased cleavage of ATG5-ATG12 complex. In summary, CGM helps the cells to survive under stressful conditions by preventing apoptosis and enhancing autophagy. Besides, the present investigation provides evidence to support the antioxidant potential of CGM in vitro and opens up a new horizon for future experiments.

Anti-inflammatory Effect of Heracleum moellendorffii Roots through the Inhibition of NF-κB and MAPK Signaling, and Activation of ROS/Nrf2/HO-1 Signaling in LPS-stimulated RAW264.7 Cells

  • Park, Su Bin;Kim, Ha Na;Kim, Jeong Dong;Jeong, Jin Boo
    • 한국자원식물학회:학술대회논문집
    • /
    • 한국자원식물학회 2019년도 추계학술대회
    • /
    • pp.66-66
    • /
    • 2019
  • Heracleum moellendorffii roots (HM-R) have been long treated for inflammatory diseases such as arthritis, backache and fever. However, an anti-inflammatory effect and the specific mechanism of HM-R were not yet clear. In this study, we for the first time explored the anti-inflammatory of HM-R. Results: HM-R dose-dependently blocked LPS-induced NO and PGE2 production. In addition, HM-R inhibited LPS-induced overexpression of iNOS, COX-2, $IL-1{\beta}$ and IL-6 in RAW264.7 cells. HM-R inhibited LPS-induced $NF-{\kappa}B$ signaling activation through blocking $I{\kappa}B-{\alpha}$ degradation and p65 nuclear accumulation. Furthermore, HM-R inhibited MAPK signaling activation by attenuating the phosphorylation of ERK1/2, p38 and JNK. HM-R increased nuclear accumulation of Nrf2 and HO-1 expression. However, NAC reduced the increased nuclear accumulation of Nrf2 and HO-1 expression by HM-R. In HPLC analysis, falcarinol was detected from HM-R as an anti-inflammatory compound. These results indicate that HM-R may exert anti-inflammatory activity by inhibiting $NF-{\kappa}B$ and MAPK signaling, and activating ROS/Nrf2/HO-1 signaling. From these findings, HM-R may have potential to be a candidate for the development of anti-inflammatory drugs.

  • PDF