• 제목/요약/키워드: potential-flow models

검색결과 115건 처리시간 0.03초

Modeling of Process Plasma Using a Radial Basis Function Network: A Cases Study

  • Kim, Byungwhan;Sungjin Rark
    • Transactions on Control, Automation and Systems Engineering
    • /
    • 제2권4호
    • /
    • pp.268-273
    • /
    • 2000
  • Plasma models are crucial to equipment design and process optimization. A radial basis function network(RBFN) in con-junction with statistical experimental design has been used to model a process plasma. A 2$^4$ full factorial experiment was employed to characterized a hemispherical inductively coupled plasma(HICP) in characterizing HICP, the factors that were varied in the design include source power, pressure, position of shuck holder, and Cl$_2$ flow rate. Using a Langmuir probe, plasma attributes were collected, which include typical electron density, electron temperature. and plasma potential as well as their spatial uniformity. Root mean-squared prediction errors of RBEN are 0.409(10(sup)12/㎤), 0.277(eV), and 0.699(V), for electron density, electron temperature, and Plasma potential, respectively. For spatial uniformity data, they are 2.623(10(sup)12/㎤), 5.704(eV) and 3.481(V), for electron density, electron temperature, and plasma potential, respectively. Comparisons with generalized regression neural network(GRNN) revealed an improved prediction accuracy of RBFN as well as a comparable performance between GRNN and statistical response surface model. Both RBEN and GRNN, however, experienced difficulties in generalizing training data with smaller standard deviation.

  • PDF

유동장 및 분무특성에 미치는 난류모델의 영향 (The Effect of Turbulence Model on the Flow Field and the Spray Characteristics)

  • 양희천;유홍선
    • 한국자동차공학회논문집
    • /
    • 제5권1호
    • /
    • pp.87-100
    • /
    • 1997
  • The ability of turbulence model to accurately describe the complex characteristics of the flow field and the fuel spray is of great importance in the optimum design of diesel engine. The numerical simulations of the flow field and the spray characteristics within the combustion chamber of direct injection model entgine are performed to examine the applicability of turbulence model. The turbulence models used are the RNG $\varepsilon$ model and the modified $\varepsilon$ model which included the compressibility effect due to the compression/expansion of the charges. In this study, the predicted results in the quiescent condition of direct injection model engine show reasonable trends comparing with the experimental data of spray characteristics, i. e., spray tip penetration, spray tip velocity. The results of eddy viscosity obtained using the $\varepsilon$ model in the spray region is significantly larger than that obtained using the RNG $\varepsilon$ model. The application of the RNG model seems to have some potential for the simulations of the spray characteristics, e. g., spray tip penetration, spray tip velocity, droplets distribution over the $\varepsilon$ model.

  • PDF

산사태 위험도 추정을 위한 간극수압 예측에 관한 연구(I) -지하수 유입량의 비교 연구- (Porewater Pressure Predictions on Hillside Slopes for Assessing Landslide Risks(I) -Comparative Study of Groundwater Recharge-)

  • 이인모;박경호;임충모
    • 한국지반공학회지:지반
    • /
    • 제8권1호
    • /
    • pp.81-102
    • /
    • 1992
  • 얇은 토층을 가지는 가파른 산사면에서 발생하는 산사태는 흔히 호우, 폭우, 태풍 등의 강우 사상 발생으로 초래된 지하수위 증가가 그 원인이 되며, 결국 산사면에서의 지하수위를 예측하는 것이 산사태 발생 위험도를 추정하는데 중요한 요소가 된다. 본 눈문에서는 산사면에서 지하수 유입량을 예측할 수 있는 비포화대 흐름 모델들 중 Sloan 등이 제안한 모델, Reddi가 제안한 모델, Thomas abcd 모델들을 선택하여 서로 비교 연구를 수행하였다. 또한, 포화투수계수와 모델변수들에 대하여 매개변수분석 연구를 수행하였다. 포화대 흐름에 대해서는 Sloan등이 개발한 Kinematic Storage Model(KSM)을 선택하여 한국의 산사면에 대한 적용 가능성을 연구하였다. 이들 모델들은 한국의 두 산사태 발생 지 역에 적용하였고, 그 적용 가능성 에 대한 연구가 이루어 졌다. 그 결과, Sloan 등과 Reddi가 제안한 두 모델들은 포화투수계수와 같은 불확실성을 지닌 실험 상수들의 영향을 많이 받으며, abcd모델은 지하수위 변동에 대하여 고려할 수 있도록 수정하고 적절한 최적화 기법을 사용하여 모델변수들을 구한다면, 비포화대 모델로서 현장 지역에 적용 가능하다는 결론을 얻었다. 또한, KSM은 포화대에서의 시간 지체 효과를 고려해 줄 수 있도록 수정되어야 한다는 결론을 얻었다. 본 논문의 결과는 가파른 산사면 에서의 산사태 발생 위험도를 추정하기 위한 지하수위 예측 모델 을 개발하는 데 이용할 수 있다.

  • PDF

$k-{\varepsilon}-{\overline{v^{'2}}}$난류 모델을 이용한 충돌 제트의 유동 및 열전달 특성에 관한 수치해석적 연구 (Numerical Simulation of Flow and Heat Transfer Characteristics of Impinging Jet Using $k-{\varepsilon}-{\overline{v^{'2}}}$ Model)

  • 최범호;이정희;최영기
    • 대한기계학회논문집B
    • /
    • 제24권2호
    • /
    • pp.204-213
    • /
    • 2000
  • This study deals with jet impingement, which is extensively used in the process industries to achieve intense heating, cooling or drying rates and also widely employed as a test flow for turbulent models due to its complex flow configuration, on a flat plate by numerical methods. In this calculation, the finite volume method was employed to solve the Navier-stokes equation based on the non-orthogonal coordinate with non-staggered variable arrangement. To get a better understanding for the fluid flow and heat transfer characteristics of the turbulent jet impingements, $k-{\varepsilon}-{\overline{v^{'2}}}$ turbulent model was adapted and compared with the experimental data and the result of standard $k-{\varepsilon}$ turbulent model. Numerical calculations were carried out with various flow rates, nozzle to plate distances. In the case of the axisymmetric jet impingement on a flat plate, $k-{\varepsilon}-{\overline{v^{'2}}}$ turbulent model showed better agreement with the experimental data than the standard $k-{\varepsilon}$ turbulent model in the prediction of the mean velocity profiles, the turbulent velocity profiles. the turbulent shear stress and the heat transfer rate. The highest heat transfer rate can be obtained when the impingement occurs within the potential core..

A Modeling Study of Local Equivalence Ratio Fluctuation in Imperfectly Premixed Turbulent Flames

  • Moon, Hee-Jang
    • Journal of Mechanical Science and Technology
    • /
    • 제18권8호
    • /
    • pp.1479-1489
    • /
    • 2004
  • The effect of fluctuation of Equivalence Ratio (ER) in a turbulent reactive field has been studied in order to check the global combustion characteristics induced by the local fluctuation. When the flow is premixed on a large scale, closer examination on a small scale reveals that local fluctuations of ER exist in an imperfectly premixed mixture, and that these fluctuations must be considered to correctly estimate the mean reaction rate. The fluctuation effect is analyzed with DNS by considering the joint PDF of reactive scalar and ER, followed by modeling study where an extension of stochastic mixing models accounting for the ER fluctuation is reviewed and tested. It was found that models prediction capability as well as its potential is in favor to this case accounting the local ER fluctuation. However, the effect of local fluctuation did not show any notable changes on the mean global characteristics of combustion when statistical independence between the reactive scalar and ER field is imposed, though it greatly influenced the joint PDF distribution. The importance of taking into account the statistical dependency between ER and combustible at the initial phase is demonstrated by testing the modeled reaction rate.

장기유입량 변화에 의한 소수력발전소 성능특성분석 (Analysis of Performance Characteristic for Small Scale Hydro Power Plant with Long Term Inflow Condition Change)

  • 박완순;이철형
    • 신재생에너지
    • /
    • 제5권4호
    • /
    • pp.39-43
    • /
    • 2009
  • The variation of inflow at stream and hydrologic performance for small scale hydro power(SSHP) plants due to climate change have been studied. The model, which can predict flow duration characteristic of stream, was developed to analyze the variation of inflow caused from rainfall condition. And another model to predict hydrologic performance for SSHP plants is established. Monthly inflow data measured at Andong dam for 32 years were analyzed. The existing SSHP plant located in upstream of Andong dam was selected and analyzed hydrologic performance characteristics. The predicted results from the developed models show that the data were in good agreement with measured results of long term inflow at Andong dam and the existing SSHP plant. Inflow and ideal hydro power potential had increased greatly in recent years, however, these did not lead annual energy production increment of existing SSHP plant. As a results, it was found that the models represented in this study can be used to predict the primary design specifications and inflow of SSHP plants effectively.

  • PDF

Collision Simulation of a Floating Offshore Wind Turbine Considering Ductile Fracture and Hydrodynamics Using Hydrodynamic Plug-in HydroQus

  • Dong Ho Yoon;Joonmo Choung
    • 한국해양공학회지
    • /
    • 제37권3호
    • /
    • pp.111-121
    • /
    • 2023
  • This paper intends to introduce the applicability of HydroQus to a problem of a tanker collision against a semi-submersible type floating offshore wind turbine (FOWT). HydroQus is a plug-in based on potential flow theory that generates interactive hydroforces in a commercial Finite element analysis (FEA) code Abaqus/Explicit. Frequency response analyses were conducted for a 10MW capacity FOWT to obtain hydrostatic and hydrodynamic constants. The tanker was modeled with rigid elements, while elastic-plastic elements were used for the FOWT. Mooring chains were modeled to implement station keeping ability of the FOWT. Two types of fracture models were considered: constant failure strain model and combined failure strain model HC-LN model composed of Hosford-Coulomb (HC) model & localized necking (LN) model. The damage extents were evaluated by hydroforces and failure strain models. The largest equivalent plastic strain observed in the cases where both restoring force and radiation force were considered. Stress triaxiality and damage indicator analysis showed that the application of HC-LN model was suitable. It could be stated that applications of suitable failure strain model and hydrodynamics into the collision simulations were of importance.

A CLV (Customer Lifetime Value) model in the wireless telecommunication industry

  • Hyunseok Hwang;Kim, Suyeon;Euiho Suh
    • 한국경영과학회:학술대회논문집
    • /
    • 한국경영과학회 2003년도 추계학술대회 및 정기총회
    • /
    • pp.187-190
    • /
    • 2003
  • Since the early 1980s, the concept of relationship management in marketing area has gained its importance. Acquiring and retaining the most profitable customers are serious concerns of a company to perform more targeted marketing campaigns. For effective CRM (Customer Relationship Management), it is important to gather information on customer value. Many researches have been performed to calculate customer value based on CLV (Customer Lifetime Value). It, however, has some limitations. It is difficult to consider the churn of customers, because the previous prediction models have focused mainly on expected future cash flow derived from customers'past profit contribution. In this paper we suggest a CLV model considering past profit contribution, potential benefit, and churn probability of a customer. We also cover a framework for analyzing customer value and segmenting customers based on their value. Customer value is classified into three categories: current value, potential value and customer loyalty. Customers are segmented according to the three categories of customer value. A case study on calculating customer value of a wireless communication company will be illustrated.

  • PDF

B-Spline 고차 경계요소법을 이용한 3차원 수중익의 날개 끝 와류유동 수치해석 (Numerical Analysis of Tip Vortex Flow of Three-dimensional Hydrofoil using B-Spline Higher-order Boundary Element Method)

  • 김지혜;안병권;김건도;이창섭
    • 한국해양공학회지
    • /
    • 제31권3호
    • /
    • pp.189-195
    • /
    • 2017
  • A three-dimensional higher order boundary element method based on the B-spline is presented. The method accurately models piecewise continuous bodies and induced velocity potentials using B-spline tensor product representations, and it is capable of obtaining accurate pointwise values for the potential and its derivatives, especially in the trailing edge and tip region of the lift generating body, which may be difficult or impossible to evaluate with constant panel methods. In addition, we implement a wake roll-up and examine the tip vortex formation in the near wake region. The results are compared with existing numerical results and the results of experiments performed out at the cavitation tunnel of Chungnam National University.

Inconsistency in the Average Hydraulic Models Used in Nuclear Reactor Design and Safety Analysis

  • Park, Jee-Won;Roh, Gyu-Hong;Park, Hangbok
    • 한국원자력학회:학술대회논문집
    • /
    • 한국원자력학회 1997년도 추계학술발표회논문집(1)
    • /
    • pp.599-604
    • /
    • 1997
  • One of important inconsistencies in the six-equation model predictions has been found to be the force experienced by a single bubble placed in a convergent stream of liquid. Various sets of governing equations yield different amount of forces to hold the bubble stationary in a convergent nozzle. By using the first order potential flow theory, it is found that the six-equation model can not be used to estimate the force experienced by a deformed bubble. The theoretical value of the particle stress of a bubble in a convergent nozzle flow has been found to be a function of the Weber number when bubble distortion is allowed. This force has been calculated by using different sets of governing equations and compared with the theoretical value. It is suggested in this study that the bubble size distribution function can be used to remove the presented inconsistency by relating the interfacial variables with different moments of the bubble size distribution function. This study also shows that the inconsistencies in the thermal-hydraulic governing equation can be removed by mechanistic modeling of the phasic interface.

  • PDF