• 제목/요약/키워드: potential-flow model

검색결과 518건 처리시간 0.026초

CFD-based Design and Analysis of the Ventilation of an Electric Generator Model, Validated with Experiments

  • Jamshidi, Hamed;Nilsson, Hakan;Chernoray, Valery
    • International Journal of Fluid Machinery and Systems
    • /
    • 제8권2호
    • /
    • pp.113-123
    • /
    • 2015
  • The efficiency of the ventilation system is a key point for durable and reliable electric generators. The design of such system requires a detailed understanding of the air flow in the generator. Computational fluid dynamics (CFD) has the potential to resolve the lack of information in this field. The present work analyses the air flow inside a generator model. The model is designed using a CFD-based approach, and manufactured by taking into consideration the experimental and numerical requirements and limitations. The emphasis is on the possibility to accurately predict and experimentally measure the flow distribution inside the stator channels. A major part of the work is focused on the design of an intake and a fan that gives an evenly distributed flow with a high flow rate. The intake also serves as an accurate flowmeter. Experimental results are presented, of the total volume flow rate, the total pressure and velocity distributions. Steady-state CFD simulations are performed using the FOAM-extend CFD toolbox. The simulations are based on the multiple rotating reference frames method. The results from the frozen rotor and mixing plane rotor-stator coupling approaches are compared. It is shown that the fan design provides a sufficient flow rate for the stator channels, which is not the case without the fan or with a previous fan design. The detailed experimental and numerical results show an excellent agreement, proving that the results reliable.

유동장 및 분무특성에 미치는 난류모델의 영향 (The Effect of Turbulence Model on the Flow Field and the Spray Characteristics)

  • 양희천;유홍선
    • 한국자동차공학회논문집
    • /
    • 제5권1호
    • /
    • pp.87-100
    • /
    • 1997
  • The ability of turbulence model to accurately describe the complex characteristics of the flow field and the fuel spray is of great importance in the optimum design of diesel engine. The numerical simulations of the flow field and the spray characteristics within the combustion chamber of direct injection model entgine are performed to examine the applicability of turbulence model. The turbulence models used are the RNG $\varepsilon$ model and the modified $\varepsilon$ model which included the compressibility effect due to the compression/expansion of the charges. In this study, the predicted results in the quiescent condition of direct injection model engine show reasonable trends comparing with the experimental data of spray characteristics, i. e., spray tip penetration, spray tip velocity. The results of eddy viscosity obtained using the $\varepsilon$ model in the spray region is significantly larger than that obtained using the RNG $\varepsilon$ model. The application of the RNG model seems to have some potential for the simulations of the spray characteristics, e. g., spray tip penetration, spray tip velocity, droplets distribution over the $\varepsilon$ model.

  • PDF

삼차원(三次元) 비정상(非定常) 지하수모형(地下水模型)에 의한 홍적대지의 지하수(地下水) 유동해석(流動解析) (Groundwater Flow Analysis Using a Transient Three-dimensional Model in an Upland Area)

  • 배상근
    • 대한토목학회논문집
    • /
    • 제10권2호
    • /
    • pp.59-65
    • /
    • 1990
  • 3차원 비정상류모형을 사용하여 출도대지(出島台地)의 소유역에 있어서 인위적및 자연적 요인이 지하수유동에 미치는 영향에 대하여 고찰하였다. 3차원 비정상류모형의 검정을 위하여, 모형에 의한 수치해석해와 Theis의 해석해를 비교한 결과 서로 좋은 대응을 나타내었다. 모의발생은 용수로(用水路)를 통하여 관개가 시작되는 5월 1일부터 30일간 행하였다. 지하수 유동양상을 포텐샬도로 나타내었으며 그에 대한 고찰이 있었다. 본 해석으로 부터 인위적 영향을 받는 지역의 지하수유동계를 해석하기 위해서는 3차원 비정상류모형이 유용하다고 사료되었다.

  • PDF

GIS를 이용한 도시지역 침수해석 (Urban Inundation Analysis by Applying with GIS)

  • 이창희;한건연;김지성
    • 한국지리정보학회지
    • /
    • 제9권2호
    • /
    • pp.115-126
    • /
    • 2006
  • 본 연구의 목적은 도시지역에서의 침수시뮬레이션에 필요한 도시침수해석모형을 개발하고, 이를 GIS(geographic information system)와 연계 운영할 수 있는 시스템을 구축함에 있다. 이를 위해서 미국환경보호청(EPA)의 SWMM(storm water management model)모형을 이용하여 도시지역 배수 시스템에서의 도시유역 유출량 및 월류량을 계산하고, 지표면으로 월류된 유량에 대해 GIS를 이용한 침수해석을 실시하였다. GIS를 이용한 침수해석 모형으로는 Level-Pool 침수해석모형과 DEM 기반 침수해석모형을 개발하고 도시지역에서의 시간별 침수위 및 침수범위 등을 계산 할 수 있게 하였다. 도시배수시스템과 지표침수해석모형을 GIS를 이용하여 통합시킨 도시침수해석 모형을 통해서 배수 시설에서의 유출량 예측과 지표면에서의 월류유량의 전파특성을 예측할 수 있도록 구성하였다. 본 연구결과는 도시지역에서의 배수 시설의 설계 및 운영의 문제, 침수 예상도의 작성 및 각종 홍수 예경보 수립에 기여할 수 있을 것으로 판단된다.

  • PDF

RNG $k-\varepsilon$ 모델의 적용성에 대한 연구 (A Study of Applicability of a RNG $k-\varepsilon$ Model)

  • 양희천;유홍선;임종한
    • 대한기계학회논문집B
    • /
    • 제21권9호
    • /
    • pp.1149-1164
    • /
    • 1997
  • In this study, the applicability of the RNG k-.epsilon. model to the analysis of the complex flows is studied. The governing equations based on a non-orthogonal coordinate formulation with Cartesian velocity components are used and discretized by the finite volume method with non-staggered variable arrangements. The predicted results using the RNG k-.epsilon. model of three complex flows, i.e., the flow over a backward-facing step and a blunt flat plate, the flow around a 2D model car are compared to these from the standard k-.epsilon. model and experimental data. That of the unsteady axisymmetric turbulent flow within a cylinder of reciprocating model engine including port/valve assembly and the spray characteristics within a chamber of direct injection model engine are compared to these from the standard k-.epsilon. model and experimental data. The results of reattachment length, separated eddy size, average surface pressure distribution using the RNG k-.epsilon. model show more reasonable trends comparing with the experimental data than those using the modified k-.epsilon. model. Although the predicted rms velocity using the modified k-.epsilon. model is lower considerably than the experimental data in incylinder flow with poppet valve, predicted axial and radial velocity distributions at the valve exit and in-cylinder region show good agreements with the experimental data. The spray tip penetration predicted using the RNG k-.epsilon. model is more close to the experimental data than that using the modified k-.epsilon. model. The application of the RNG k-.epsilon. model seems to have some potential for the simulations of the unsteady turbulent flow within a port/valve-cylinder assembly and the spray characteristics over the modified k-.epsilon. model.

PSCF 모델을 활용한 부산지역 PM10의 발생원 추정 (Estimation of PM10 source locations in Busan using PSCF model)

  • 도우곤;정우식
    • 한국환경과학회지
    • /
    • 제24권6호
    • /
    • pp.793-806
    • /
    • 2015
  • The purpose of this study is to find out the air flow patterns affecting the PM10 concentration in Busan and the potential sources within each trajectory pattern. The synoptic air flow trajectories are classified into four clusters by HYSPLIT model and the potential sources of PM10 are estimated by PSCF model for each cluster from 2008 to 2012. The potential source locations of PM10 are compared with the distribution of PM10 anthropogenic emissions in east Asia developed in 2006 for the NASA INTEX-B mission. The annual mean concentrations of PM10 in Busan decreased from $51ug/m^3$ in 2008 to $43ug/m^3$ in 2012. The monthly mean concentrations of PM10 were high during a spring season, March to May and low during a summer season, August and September. The cluster2 composed of the air trajectories from the eastern China to Busan through the west sea showed the highest frequency, 44 %. The cluster1 composed of the air trajectories from the inner Mongolia region to Busan through the northeast area of China showed the second high frequency, 26 %. The cluster3 and 4 were composed of the trajectories originated in the southeast sea and the east sea of Busan respectively and showed low frequencies. The concentrations of in each cluster were $47ug/m^3$ in cluster1, $56ug/m^3$ in cluster2, $42ug/m^3$ in cluster3 and $37ug/m^3$ in cluster4. From these results, it was proved that the cluster1 and 2 composed of the trajectories originated in the east and northeast area of China were the causes of high PM10 concentrations in Busan. The results of PSCF and CWT model showed that the potential sources of the high PM10 concentrations were the areas of the around Mongolia and the eastern China having high emissions of PM10 from Beijing, Hebei to Shanghai through Shandong, Jiangsu.

지하공동 주변의 지하수 흐름(수막)해석을 위한 수치모형의 확립 (Establishment of Numerical Model for Groundwater Flow (Water Curtain) Analysis around Underground Caverns)

  • 정일문;조원철;배덕효
    • 한국수자원학회논문집
    • /
    • 제30권1호
    • /
    • pp.63-73
    • /
    • 1997
  • 본 연구는 지하심부에 유류를 저장할 때 널리 이용되는 수막시설의 설치에 따른 공동주변의 흐름해석을 모의하기 위한 유한요소모형의 확립에 관한 것이다. 최종 행렬방정식의 대칭형 전체전도행렬을 풀기위해 벡터저장방식의 Choleski법을 이용하였으며, 전기상사법의 결과와 비교하여 모형을 검증하였다. 모형을 실제 비축기지에 적용하였으며, 대표적인 횡단면에 대해 요소망을 구성하여 공동내부의 압력과 수평수막설치에 따른 포텐션과 유속의 변화 등을 비교하고, 종단면에 대한 분석을 통해 연직수막설치에 따른 포텐셜의 변화와 인접공동간의 영향을 비교 분석한 결과 본 연구에서 확립된 모형은 공동주변 흐름해석에 유용하게 이용될 수 있는 것으로 확인되었다.

  • PDF

A study on the dynamic instabilities of a smart embedded micro-shell induced by a pulsating flow: A nonlocal piezoelastic approach

  • Atabakhshian, Vahid;Shooshtaria, Alireza
    • Advances in nano research
    • /
    • 제9권3호
    • /
    • pp.133-145
    • /
    • 2020
  • In this study, nonlinear vibrations and dynamic instabilities of a smart embedded micro shell conveying varied fluid flow and subjected to the combined electro-thermo-mechanical loadings are investigated. With the aim of designing new hydraulic sensors and actuators, the piezoelectric materials are employed for the body and the effects of applying electric field on the stability of the system as well as the induced voltage due to the dynamic behavior of the system are studied. The nonlocal piezoelasticity theory and the nonlinear cylindrical shell model in conjunction with the energy approach are utilized to mathematically modeling of the structure. The fluid flow is assumed to be isentropic, incompressible and fully develop, and for more generality of the problem both steady and time dependent flow regimes are considered. The mathematical modeling of fluid flow is also carried out based on a scalar potential function, time mean Navier-Stokes equations and the theory of slip boundary condition. Employing the modified Lagrange equations for open systems, the nonlinear coupled governing equations of motion are achieved and solved via the state space problem; forth order numerical integration and Bolotin's method. In the numerical results, a comprehensive discussion is made on the dynamical instabilities of the system (such as divergence, flutter and parametric resonance). We found that applying positive electric potential field will improve the stability of the system as an actuator or vibration amplitude controller in the micro electro mechanical systems.

장입물 층상구조에 따른 고로내 운전상황 변화 연구 (A Study on Operation Condition of Blast Furnace According to Burden Distribution)

  • 양광혁;최상민;정진경
    • 한국연소학회:학술대회논문집
    • /
    • 한국연소학회 2006년도 제33회 KOSCO SYMPOSIUM 논문집
    • /
    • pp.145-150
    • /
    • 2006
  • At the furnace top, the distribution of charging coke and ore is adjusted to control the reducing gas flow distribution in the furnace. It is necessary to predict operation condition of blast furnace according to the burden profile to judge whether charging is properly conducted In this study, We propose the model for predicting while layer structures whithin furnace when top burden profile was given. Layer structure of coke and ore could be predicted by top burden profile and solid velocity. Solid velocity is assumed as potential flow. Potential function distribution and timeline are also calculated using solid velocity field. The Calculation is conducted for different burden profile cases. As the result burden distribution and grid structure, which is deformed to match the layer structure in shaft and deadman profile. Gas flow was calculated using this grid, and calculated results are compared with each other.

  • PDF

전기장 해석을 통한 아크/열 유동 해석 (Numerical Analysis of Arc-Heated Flow through a solution of Electric Field)

  • 김진수;오세종;최정열
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2000년도 추계 학술대회논문집
    • /
    • pp.72-77
    • /
    • 2000
  • This paper presents the results of the application of a computational fluid dynamics algorithm for the simulation of plasma flows of arc-heated jet. The underlying physical model is based on the axisymmetric form of the conservation equations that are coupled with an arc model including Ohm heating, electromagnetic forces. The arc model given as a source term in fluid dynamic equations is determined by a solution of electric potential field governed by an elliptic partial differential equation. The governing equation of electric field is loosely coupled with fluid dynamic equations by an electric conductivity that is a function of state variables. However, the electric fields and flow fields cannot be solved In fully coupled manner, but should be solved iteratively due to the different characteristics of governing equations. With this solution approach, several applications of arc flow analysis will be presented including Arc Thruster and Circuit Breaker.

  • PDF