• Title/Summary/Keyword: potential therapeutics

Search Result 595, Processing Time 0.035 seconds

Analysis of the Status and Future Direction for Digital Therapeutics in Children and Adolescent Psychiatry

  • Haemi Choi;Bora Kim;Insoo Kim;Jae-Gu Kang;Yoonjae Lee;Hyowon Lee;Min-Hyeon Park
    • Journal of the Korean Academy of Child and Adolescent Psychiatry
    • /
    • v.34 no.4
    • /
    • pp.192-203
    • /
    • 2023
  • Digital therapeutics based on software, such as artificial intelligence, virtual reality, games, and smartphone applications, are in the spotlight as new therapeutic alternatives in child and adolescent psychiatry. It draws attention to overcoming conventional therapeutics' limitations, such as toxicity, cost, and accessibility, and encourages patients to participate in the treatment attractively. The growth potential of the digital therapeutics market for psychiatric disorders in children and adolescents in Korea and abroad has been highlighted. Clinical studies and Food and Drug Administration approvals for digital therapeutics have increased, and cases approved by the Ministry of Food and Drug Safety have emerged in Korea. As seen above, digital transformation in child and adolescent psychiatry will change treatment paradigms significantly. Therefore, as this new field has just begun to emerge, it is necessary to verify the effectiveness and scope of the application of digital therapeutics and consider preparing a compensation system and institutional arrangements. Accordingly, this study analyzed the development trends and application status of digital therapeutics in children and adolescents and presented limitations and development directions from the perspective of application in healthcare. Further, the study is expected to identify the utility and limitations of digital therapeutics for children and adolescents and establish effective application measures.

Development of mRNA Vaccines/Therapeutics and Their Delivery System

  • Sora Son;Kyuri Lee
    • Molecules and Cells
    • /
    • v.46 no.1
    • /
    • pp.41-47
    • /
    • 2023
  • The rapid development of mRNA vaccines has contributed to the management of the current coronavirus disease 2019 (COVID-19) pandemic, suggesting that this technology may be used to manage future outbreaks of infectious diseases. Because the antigens targeted by mRNA vaccines can be easily altered by simply changing the sequence present in the coding region of mRNA structures, it is more appropriate to develop vaccines, especially during rapidly developing outbreaks of infectious diseases. In addition to allowing rapid development, mRNA vaccines have great potential in inducing successful antigen-specific immunity by expressing target antigens in cells and simultaneously triggering immune responses. Indeed, the two COVID-19 mRNA vaccines approved by the U.S. Food and Drug Administration have shown significant efficacy in preventing infections. The ability of mRNAs to produce target proteins that are defective in specific diseases has enabled the development of options to treat intractable diseases. Clinical applications of mRNA vaccines/therapeutics require strategies to safely deliver the RNA molecules into targeted cells. The present review summarizes current knowledge about mRNA vaccines/ therapeutics, their clinical applications, and their delivery strategies.

Flavonoids: Broad Spectrum Agents on Chronic Inflammation

  • Lim, Hyun;Heo, Moon Young;Kim, Hyun Pyo
    • Biomolecules & Therapeutics
    • /
    • v.27 no.3
    • /
    • pp.241-253
    • /
    • 2019
  • Flavonoids are major plant constituents with numerous biological/pharmacological actions both in vitro and in vivo. Of these actions, their anti-inflammatory action is prominent. They can regulate transcription of many proinflammatory genes such as cyclooxygenase-2/inducible nitric oxide synthase and many cytokines/chemokines. Recent studies have demonstrated that certain flavonoid derivatives can affect pathways of inflammasome activation and autophagy. Certain flavonoids can also accelerate the resolution phase of inflammation, leading to avoiding chronic inflammatory stimuli. All these pharmacological actions with newly emerging activities render flavonoids to be potential therapeutics for chronic inflammatory disorders including arthritic inflammation, meta-inflammation, and inflammaging. Recent findings of flavonoids are summarized and future perspectives are presented in this review.

Mechanistic ligand-receptor interaction model: operational model of agonism

  • Kim, Hyungsub;Lim, Hyeong-Seok
    • Translational and Clinical Pharmacology
    • /
    • v.26 no.3
    • /
    • pp.115-117
    • /
    • 2018
  • This tutorial explains the basic principles of mechanistic ligand-receptor interaction model, which is an operational model of agonism. A growing number of agonist drugs, especially immune oncology drugs, is currently being developed. In this tutorial, time-dependent ordinary differential equation for simple $E_{max}$ operational model of agonism was derived step by step. The differential equation could be applied in a pharmacodynamic modeling software, such as NONMEM, for use in non-steady state experiments, in which experimental data are generated while the interaction between ligand and receptor changes over time. Making the most of the non-steady state experimental data would simplify the experimental processes, and furthermore allow us to identify more detailed kinetics of a potential drug. The operational model of agonism could be useful to predict the optimal dose for agonistic drugs from in vitro and in vivo animal pharmacology experiments at the very early phase of drug development.

Antitumor effects of ophiopogonin D on oral squamous cell carcinoma

  • Nguyen Thi Kieu Trang;Vu Phuong Dong;Hoon Yoo
    • International Journal of Oral Biology
    • /
    • v.49 no.2
    • /
    • pp.42-47
    • /
    • 2024
  • Ophiopogonin D (OPD) is a steroidal glycoside derived from Ophiopogon japonicus, a traditional Chinese medicine with diverse biological activities, including antithrombosis, anti-inflammation, and antitussive effects. To investigate the cellular effects and mechanisms of OPD on oral squamous cell carcinoma, cell viability was explored, and the effects of OPD on cell cycle regulators, apoptotic marker proteins, and key proteins involved in metastasis and signaling pathways were examined by MTT assay and Western blotting in YD38 cells. OPD strongly inhibited cell proliferation and induced caspase-dependent apoptosis of YD38 cells by suppressing the cell cycle and activating caspase-3 and poly ADP ribose polymerase. Additionally, OPD suppressed the expression of vital proteins regulating metastasis and proliferation within the integrin/matrix metalloproteinases/FAK and AKT/PI3K/mTor pathways. Thus, OPD can be a potential treatment candidate for gingival cancer.

The oncogenic effects of p53-inducible gene 3 (PIG3) in colon cancer cells

  • Park, Seon-Joo;Kim, Hong Beum;Kim, Jeeho;Park, Sanggon;Kim, Seok Won;Lee, Jung-Hee
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.21 no.2
    • /
    • pp.267-273
    • /
    • 2017
  • The p53-inducible gene 3 (PIG3), initially identified as a gene downstream of p53, plays an important role in the apoptotic process triggered by p53-mediated reactive oxygen species (ROS) production. Recently, several studies have suggested that PIG3 may play a role in various types of cancer. However, the functional significance of PIG3 in cancer remains unclear. Here, we found that PIG3 was highly expressed in human colon cancer cell lines compared to normal colon-derived fibroblasts. Therefore, we attempted to elucidate the functional role of PIG3 in colon cancer. PIG3 overexpression increases the colony formation, migration and invasion ability of HCT116 colon cancer cells. Conversely, these tumorigenic abilities were significantly decreased in in vitro studies with PIG3 knockdown HCT116 cells. PIG3 knockdown also attenuated the growth of mouse xenograft tumors. These results demonstrate that PIG3 is associated with the tumorigenic potential of cancer cells, both in vitro and in vivo, and could play a key oncogenic role in colon cancer.

Effect of Sarcotride A on Membrane Potential in C6 Glioma Cells

  • Lee Yun-Kyung;Liu Yong-Hong;Jung Jee-H.;Im Dong-Soon
    • Biomolecules & Therapeutics
    • /
    • v.14 no.2
    • /
    • pp.110-113
    • /
    • 2006
  • We tested effect of sarcotride A, a bioactive cyclitol derivative from a marine sponge, on membrane potential in C6 glioma cells. Membrane potential was estimated by measuring fluorescence change of DiBAC-loaded glioma cells. Sarcotride A increased membrane potential in a concentration-dependent manner. We tested effects of pertussis toxin, U73122, EIPA, and $Na^+-free$ media on sarcotride A-induced increase of membrane potential to investigate involvement of G proteins, phospholipase C, $Na^+/H^+$ exchanger, and $Na^+$ channels. However, we were not able to observe any significant effect of those pharmacological inhibitors, excluding the involvement of the molecules as candidate targets or signaling molecules of sarcotride A-induced increase of membrane potential. Further investigation is necessary to elucidate action mechanism of sarcotride A.

Synthesis of Novel Nicotinic Ligands as Potential Therapeutic Agents for Alzheimer's Disease

  • Park, Hae-Il
    • Proceedings of the PSK Conference
    • /
    • 2003.04a
    • /
    • pp.75-76
    • /
    • 2003
  • Much of the recent increase in research on nicotinic ligands has been motivated by a growing body of evidence that nicotinic cholinergic pharmacology plays a role in disorder associated with deficits of cognitive function in humans. The importance of developing novel nicotinic ligands as potential therapeutics is emphasized by studies with nicotine itself that have demonstrated many useful CNS and cognitive effects in various disorders such as dementia. (omitted)

  • PDF

Signal Transduction in the Osteoblast Cells (조골 세포의 신호전달 기전)

  • 김성진
    • Biomolecules & Therapeutics
    • /
    • v.7 no.4
    • /
    • pp.329-334
    • /
    • 1999
  • Recently, cellular signal transduction mechanisms are greatly understood. However, bone cell signaling is not completely characterized. Interestingly, bone cells synthesize a number of growth factors such as IGF-I PDGF, IGF-II etc., suggesting these growth factors play important roles in bone cell signaling. In the present study, potential roles of nitric oxide (NO) and protein kinases in osteoblast signal transduction are proposed.

  • PDF