• 제목/요약/키워드: potential therapeutic target

검색결과 379건 처리시간 0.032초

Application of genome engineering for treatment of retinal diseases

  • Jo, Dong Hyun;Kim, Jeong Hun
    • BMB Reports
    • /
    • 제51권7호
    • /
    • pp.315-316
    • /
    • 2018
  • Genome engineering with clustered regularly interspaced short palindromic repeats (CRISPR) system can be used as a tool to correct pathological mutations or modulate gene expression levels associated with pathogenesis of human diseases. Owing to well-established local administration methods including intravitreal and subretinal injection, it is relatively easy to administer therapeutic genome engineering machinery to ocular tissues for treating retinal diseases. In this context, we have investigated the potential of in vivo genome engineering as a therapeutic approach in the form of ribonucleoprotein or CRISPR packaged in viral vectors. Major issues in therapeutic application of genome engineering include specificity and efficacy according to types of CRISPR system. In addition to previous platforms based on ribonucleoprotein and CRISPR-associated protein 9 derived from Campylobacter jejuni, we evaluated the therapeutic effects of a CRISPR RNA-guided endonuclease derived from Lachnospiraceae bacterium ND2006 (LbCpf1) in regulating pathological angiogenesis in an animal model of wet-type age-related macular degeneration. LbCpf1 targeting Vegfa or Hif1a effectively disrupted the expression of genes in ocular tissues, resulting in suppression of choroidal neovascularization. It was also notable that there were no significant off-target effects in vivo.

Clinical Application of Gold Nanoparticles for Diagnosis and Treatment

  • Baek, Seung-Kuk
    • Medical Lasers
    • /
    • 제10권2호
    • /
    • pp.61-67
    • /
    • 2021
  • Advances in nanobiotechnology have presented numerous possibilities of more effective diagnostic and therapeutic options. In particular, gold nanoparticles have demonstrated the potential for application in molecular imaging and treatment of cancers, including drug delivery system of certain target molecules, enhancement of radiation therapy, and photothermal treatment. This review discusses the properties, mechanism of action, and clinical application of gold nanoparticles. Although the safety of nanoparticles is yet to be ascertained, there is no doubt that in the future, nanotechnology will play an important role in the development and enhancement of a wide range of diagnostic and treatment modalities.

혈관신생 분자핵의학 영상 (Molecular Nuclear imaging of Angiogenesis)

  • 이경한
    • 대한핵의학회지
    • /
    • 제38권2호
    • /
    • pp.171-174
    • /
    • 2004
  • Angiogenesis, the formation of new capillaries from existing vessels, increases oxygenation and nutrient supply to ischemic tissue and allows tumor growth and metastasis. As such, angiogenesis targeting provides a novel approach for cancer treatment with easier drug delivery and less drug resistance. Therapeutic anti-angiogenesis has shown impressive effects in animal tumor models and are now entering clinical trials. However, the successful clinical introduction of this new therapeutic approach requires diagnostic tools that can reliably measure angiogenesis in a noninvasive and repetitive manner. Molecular imaging is emerging as an exciting new discipline that deals with imaging of disease on a cellular or genetic level. Angiogenesis imaging is an important area for molecular imaging research, and the use of radiotracers offers a particularly promising technique for its development. While current perfusion and metabolism radiotracers can provide useful information related to tissue vascularity, recent endeavors are focused on the development of novel radioprobes that specifically and directly target angiogenic vessels. Presently available proges include RGD sequence containing peptides that target ${\alpha}_v\;{\beta}_3$ integrin, endothelial growth factors such as VEGF or FGF, metalloptoteinase inhibitors, and specific antiangiogenic drugs. It is now clear that nuclear medicine techniques have a remarkable potential for angiogenesis imaging, and efforts are currently continuing to develop new radioprobes with superior imaging properties. With future identification of novel targets, design of better probes, and improvements in instrumentation, radiotracer angiogenesis imaging promises to play an increasingly important role in the diagnostic evaluation and treatment of cancer and other angiogenesis related diseases.

Current Drugs and Drug Targets in Non-Small Cell Lung Cancer: Limitations and Opportunities

  • Daga, Aditi;Ansari, Afzal;Patel, Shanaya;Mirza, Sheefa;Rawal, Rakesh;Umrania, Valentina
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제16권10호
    • /
    • pp.4147-4156
    • /
    • 2015
  • Lung cancer is a serious health problem and leading cause of death worldwide due to its high incidence and mortality. More than 80% of lung cancers feature a non-small cell histology. Over few decades, systemic chemotherapy and surgery are the only treatment options in this type of tumor but due to their limited efficacy and overall poor survival of patients, there is an urge to develop newer therapeutic strategies which circumvent the problems. Enhanced knowledge of translational science and molecular biology have revealed that lung tumors carry diverse driver gene mutations and adopt different intracellular pathways leading to carcinogenesis. Hence, the development of targeted agents against molecular subgroups harboring critical mutations is an attractive approach for therapeutic treatment. Targeted therapies are clearly more preferred nowadays over systemic therapies because they target tumor specific molecules resulting with enhanced activity and reduced toxicity to normal tissues. Thus, this review encompasses comprehensive updates on targeted therapies for the driver mutations in non-small cell lung cancer (NSCLC) and the potential challenges of acquired drug resistance faced i n the field of targeted therapy along with the imminent newer treatment modalities against lung cancer.

자연살해세포와 항암면역치료 (Natural Killer Cell and Cancer Immunotherapy)

  • 김헌식
    • 한양메디칼리뷰
    • /
    • 제33권1호
    • /
    • pp.59-64
    • /
    • 2013
  • Cancer remains the leading cause of death worldwide despite intense efforts in developing innovative treatments. Current approaches in cancer therapy are mainly directed to a selective targeting of cancer cells to avoid potential side effects associated with conventional therapy. In this respect, Natural killer (NK) cells have gained growing attention and are now being considered as promising therapeutic tools for cancer therapy owing to their intrinsic ability to rapidly recognize and kill cancer cells, while sparing normal healthy cells. NK cells play a key role in the first line of defense against transformed and virus-infected cells. NK cells sense their target through a whole array of receptors, both activating and inhibitory. Functional outcome of NK cell against target cells is determined by the balance of signals transmitted from diverse activating and inhibiting receptors. Despite significant progress made in the role of NK cells attack as a pivotal sentinel in tumor surveillance, the molecular has been that regulate NK cell responses remain unclear, which restricts the use of NK cells as a therapeutic measure. Accordingly, current efforts for NK cell-based cancer therapy have largely relied on the strategies that are based on the manipulation of inhibitory receptor function. However, if we better understand the mechanisms governing NK cell activation, including those mediated by diverse activating receptors, this knowledge can be applied to the development of optimal design for cancer immunotherapy by targeting NK cells.

Tumor antigen PRAME is a potential therapeutic target of p53 activation in melanoma cells

  • Yong-Kyu Lee;Hyeon Ho Heo;Nackhyoung Kim;Ui-Hyun Park;Hyesook Youn;Eun-Yi Moon;Eun-Joo Kim;Soo-Jong Um
    • BMB Reports
    • /
    • 제57권6호
    • /
    • pp.299-304
    • /
    • 2024
  • Upregulation of PRAME (preferentially expressed antigen of melanoma) has been implicated in the progression of a variety of cancers, including melanoma. The tumor suppressor p53 is a transcriptional regulator that mediates cell cycle arrest and apoptosis in response to stress signals. Here, we report that PRAME is a novel repressive target of p53. This was supported by analysis of melanoma cell lines carrying wild-type p53 and human melanoma databases. mRNA expression of PRAME was downregulated by p53 overexpression and activation using DNA-damaging agents, but upregulated by p53 depletion. We identified a p53-responsive element (p53RE) in the promoter region of PRAME. Luciferase and ChIP assays showed that p53 represses the transcriptional activity of the PRAME promoter and is recruited to the p53RE together with HDAC1 upon etoposide treatment. The functional significance of p53 activation-mediated PRAME downregulation was demonstrated by measuring colony formation and p27 expression in melanoma cells. These data suggest that p53 activation, which leads to PRAME downregulation, could be a therapeutic strategy in melanoma cells.

Overexpression of Hypermethylated Homeobox A11 (HOXA11) Inhibits Tumor Cell Growth and Induces Apoptosis in Cervical Cancer

  • Seung-Yul Lee;Tae Jeong Oh;Sungwhan An;Seung-Hoon Lee
    • 한국발생생물학회지:발생과생식
    • /
    • 제28권2호
    • /
    • pp.37-45
    • /
    • 2024
  • This study aimed to elucidate the potential of Homeobox A11 (HOXA11) as a therapeutic target and a diagnostic methylation marker for cervical cancer. Gene expression analysis using cDNA microarray in cervical cancer cell lines revealed significantly reduced expression of the HOXA11 gene. Subsequent investigation of HOXA11 promoter methylation in samples from normal individuals and invasive cervical cancer patients showed over 53.2% higher methylation in cancer scrapes compared to normal scrapes. Furthermore, overexpression of HOXA11, which is downregulated in cervical cancer, strongly suppressed cell growth in cervical cancer cell lines, HeLa and HT3. Additionally, we performed transferase dUTP nick end labeling assay and confirmed that the inhibition of cervical cancer cell proliferation occurred via apoptosis. Mechanistically, overexpression of HOXA11 led to mitochondrial apoptosis characterized by PARP cleavage due to increased c-Myc and enhanced cytochrome C secretion into the cytoplasm. These findings suggest that HOXA11 could potentially serve as a methylation marker for diagnosing cervical cancer and as a novel therapeutic target for its treatment.

Molecular docking study of nuciferine as a tyrosinase inhibitor and its therapeutic potential for hyperpigmentation

  • Veerabhuvaneshwari Veerichetty;Iswaryalakshmi Saravanabavan
    • Genomics & Informatics
    • /
    • 제21권3호
    • /
    • pp.43.1-43.13
    • /
    • 2023
  • Melanin is synthesized by tyrosinase to protect the skin from ultraviolet light. However, overproduction and accumulation of melanin can result in hyperpigmentation and skin melanoma. Tyrosinase inhibitors are commonly used in the treatment of hyperpigmentation. Natural tyrosinase inhibitors are often favoured over synthetic ones due to the potential side effects of the latter, which can include skin irritation, allergies, and other adverse reactions. Nuciferine, an alkaloid derived from Nelumbo nucifera, exhibits potent antioxidant and anti-proliferative properties. This study focused on the in silico screening of nuciferine for anti-tyrosinase activity, using kojic acid, ascorbic acid, and resorcinol as standards. The tyrosinase protein target was selected through homology modeling. The residues of the substrate binding pocket and active site pockets were identified for the purposes of grid box optimization and docking. Therefore, nuciferine is a potent natural tyrosinase inhibitor and shows promising potential for application in the treatment of hyperpigmentation and skin melanoma.

유전자 발현을 활용한 루테튬 (177Lu)의 암 치료 효능 검증 (Verification of the Cancer Therapeutic Efficacy of Lutetium-177 Using Gene Expression)

  • 김다미;이소영;임재청;최강혁
    • 방사선산업학회지
    • /
    • 제17권4호
    • /
    • pp.417-425
    • /
    • 2023
  • Lutetium(177Lu), with its theranostic properties, is one of the most widely used radioisotopes and has a large share of the radiopharmaceutical market due to its many applications and targeted therapeutic research using lutetium-based radiopharmaceuticals. However, lutetium-based radiopharmaceuticals currently approved by the US Food and Drug Administration (FDA) are limited to the indications of gastrointestinal cancer, pancreatic neuroendocrine cancer and metastatic castration-resistant prostate cancer. To overcome these limitations, we aimed to demonstrate the feasibility of expanding the use of lutetium-based radiopharmaceuticals by verifying the availability and therapeutic efficacy of lutetium produced in a research reactor(HANARO). In this study, we confirmed the therapeutic efficacy of lutetium by using cancer cells from different types of cancer. In addition, we selected cancer biomarkers based on characteristics common to various cancer cells and compared and evaluated the therapeutic efficacy of lutetium by regulating the expression of target genes. The results showed that modulation of cancer biomarker gene expression resulted in higher therapeutic efficacy compared to lutetium alone. In conclusion, this study verified the potential use and therapeutic efficacy of lutetium based on the production of a research reactor (HANARO), providing fundamental evidence for the development of lutetium-based radiopharmaceuticals and the expansion of their indications.

Caenorhabditis elegans: A Model System for Anti-Cancer Drug Discovery and Therapeutic Target Identification

  • Kobet, Robert A.;Pan, Xiaoping;Zhang, Baohong;Pak, Stephen C.;Asch, Adam S.;Lee, Myon-Hee
    • Biomolecules & Therapeutics
    • /
    • 제22권5호
    • /
    • pp.371-383
    • /
    • 2014
  • The nematode Caenorhabditis elegans (C. elegans) offers a unique opportunity for biological and basic medical researches due to its genetic tractability and well-defined developmental lineage. It also provides an exceptional model for genetic, molecular, and cellular analysis of human disease-related genes. Recently, C. elegans has been used as an ideal model for the identification and functional analysis of drugs (or small-molecules) in vivo. In this review, we describe conserved oncogenic signaling pathways (Wnt, Notch, and Ras) and their potential roles in the development of cancer stem cells. During C. elegans germline development, these signaling pathways regulate multiple cellular processes such as germline stem cell niche specification, germline stem cell maintenance, and germ cell fate specification. Therefore, the aberrant regulations of these signaling pathways can cause either loss of germline stem cells or overproliferation of a specific cell type, resulting in sterility. This sterility phenotype allows us to identify drugs that can modulate the oncogenic signaling pathways directly or indirectly through a high-throughput screening. Current in vivo or in vitro screening methods are largely focused on the specific core signaling components. However, this phenotype-based screening will identify drugs that possibly target upstream or downstream of core signaling pathways as well as exclude toxic effects. Although phenotype-based drug screening is ideal, the identification of drug targets is a major challenge. We here introduce a new technique, called Drug Affinity Responsive Target Stability (DARTS). This innovative method is able to identify the target of the identified drug. Importantly, signaling pathways and their regulators in C. elegans are highly conserved in most vertebrates, including humans. Therefore, C. elegans will provide a great opportunity to identify therapeutic drugs and their targets, as well as to understand mechanisms underlying the formation of cancer.