• Title/Summary/Keyword: potential severity assessment

Search Result 45, Processing Time 0.025 seconds

Integrated Safety Risk Assessment and Response Preparation on Construction Site Formwork Using FMECA Method (FMECA 기법을 적용한 건설현장 거푸집작업의 통합 안전위험성 평가 및 대응방안 마련)

  • An, Sun-Ju;Song, Sang-Hoon
    • Journal of the Korea Safety Management & Science
    • /
    • v.14 no.3
    • /
    • pp.39-48
    • /
    • 2012
  • Risk Assessment to list possible safety disasters and their probability and severity is the starting point for effective safety management on construction project site. However, the safety managers in owners, construction supervisors, contractors, and sub-contractors still have difficulties in judging the priorities of safety activities and preparing responses to each potential safety disasters. Therefore, this study aimed to suggest a systematic method in assessing safety risk prior to commencement with the agreement of stakeholders. FMECA(failure mode effects and criticality analysis) was selected as a main assessment tool and it was modified according to the characteristics of construction projects and trades. Each risk is, firstly, evaluated with occurrence probability, possible loss and impacts to projects, and detections, and then risk priority number(RPN) is calculated. Subsequently, the managers of each stakeholder discuss the types, timing, and responsibilities of responses as a group decision-making process.

HAZARD ASSESSMENT OF CURRENT STATE OF VEGETATION DEGRADATION USING GIS, A CASE STUDY: SADRA REGION, IRAN

  • Masoudi, Masoud;Amiri, E.
    • Journal of Ecology and Environment
    • /
    • v.36 no.1
    • /
    • pp.49-56
    • /
    • 2013
  • The entire land of Southern Iran faces problems arising out of various types of land degradation of which vegetation degradation forms one of the major types. The present work introduces a model developed for assessing the current status of hazard of vegetation degradation using Geographic Information System (GIS). This kind of assessment differs from those assessments based on vulnerability or potential hazard assessments. The Sadra watershed which covers the upper reaches of Marharlu basin, Fars Province, has been chosen for a hazard assessment of this type of degradation. The different kinds of data for indicators of current status of vegetation degradation were gathered from collecting of field data and also records of the governmental offices of Iran. Taking into consideration three indicators of current status of vegetation degradation the model identifies areas with different hazard classes. By fixing the thresholds of severity classes of the three indicators including per cent of vegetation cover, biomass production and ratio of actual biomass to potential biomass production, a hazard map for each indicator was first prepared in GIS. The final hazard map of current status of vegetation degradation was prepared by intersecting three hazards in the GIS. Results show areas under severe hazard class have been found to be widespread (89 %) while areas under moderate and very severe hazard classes have been found less extensive in the Sadra watershed. The preparation of hazard maps based on the GIS analysis of these indicators will be helpful for prioritizing the areas to initiate remedial measures.

Development of the Method for Liquefaction Hazard Microzonation in Korean Coastal Areas (국내 연안지역의 액상화 재해도 작성기법 개발)

  • 곽창원;최재순;강규진;김수일
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2002.03a
    • /
    • pp.431-438
    • /
    • 2002
  • Reclaimed coastal areas for the construction of ports and harbors are in general subjected to strong possibility of liquefaction. In this research, a new method for liquefaction hazard microzonation based on liquefaction settlements was developed. Severity of liquefaction hazard was defined by liquefaction settlements obtained from the method proposed by Tokimatsu and Seed. 10 coastal areas, representing typical geological and geotechnical characteristics of Korean ports and harbors, and 3 real earthquake records for site response analysis were selected. From this research, liquefaction settlement criteria is adapted as a new quantitative index for the liquefaction hazard microzonation. Liquefaction settlements were also compared with LPI (Liquefaction Potential Index), obtained from the assessment of liquefaction potential based on the modified Seed and Idriss's method. As an example, 2 and 3 dimensional liquefaction hazard microzonations of Pusan port and harbor area were mapped by overlapped liquefaction settlement contours.

  • PDF

Risk-based Security Impact Evaluation of Bridges for Terrorism (Security and Risk를 기반으로 한 교량구조물의 재난 안전성 평가)

  • Kang, Sang-Hyeok;Choi, Hyun-Ho;Seo, Jong-Won
    • 한국방재학회:학술대회논문집
    • /
    • 2008.02a
    • /
    • pp.629-632
    • /
    • 2008
  • Risk-based security impact evaluation may be affected by various factors according to numerous combinations of explosive devices, cutting devices, impact vehicles, and specific attack location to consider. Presently, in planning and design phases, designers are still often uncertain of their responsibility, lack of information and training of security. Therefore, designers are still failing to exploit the potential to reduce threats on site. In this study, the concept of security impact assessment is introduced in order to derive the performing design for safety in design phase. For this purpose, a framework for security impact assessment model using risk-based approach for bridge structures is suggested. The suggested model includes of information survey, classification of terror threats, and quantitative estimation of severity and occurrence.

  • PDF

Integrated Model for Assessment of Risks in Rail Tracks under Various Operating Conditions

  • G. Chattopadhyay;V. Reddy;Larsson, P-O
    • International Journal of Reliability and Applications
    • /
    • v.4 no.4
    • /
    • pp.183-190
    • /
    • 2003
  • Rail breaks and derailments can cause a huge loss to rail players due to loss of service, revenue, property or even life. Maintenance has huge impact on reliability and safety of railroads. It is important to identify factors behind rail degradation and their risks associated with rail breaks and derailments. Development of mathematical models is essential for prediction and prevention of risks due to rail and wheel set damages, rail breaks and derailments. This paper addresses identification of hazard modes, estimation of probability of those hazards under operating, curve and environmental condition, probability of detection of potential hazards before happening and severity of those hazards for informed strategic decisions. Emphasis is put on optimal maintenance and operational decisions. Real life data is used for illustration.

  • PDF

Qualitative Assessment for Hazard on the Electric Power Installations of a Construction Field using FMEA (FMEA를 이용한 건설현장 전력설비의 위험성에 대한 정성적 평가)

  • Kim Doo-hyun;Lee Jong-ho
    • Journal of the Korean Society of Safety
    • /
    • v.19 no.4 s.68
    • /
    • pp.36-41
    • /
    • 2004
  • This paper presents an qualitative assessment for hazard on the electric power installations of a construction field using FMEL The power installations have the mission to maintain the highest level of service reliability on the works. The more capital the electric power invest the higher service reliability they plausibly will achieve. However, because of limited resources, how effectively budgets can be allocated to achieve service reliability as high as possible. The assessment typically generates recommendations for increasing component reliability, thus improving the power installation safety. The FMEA tabulates the failure modes of components and how their failure affects the power installations being considered. Tn order to estimate the risks of a failures, the FMEA presents criticality estimation or risk priority number using the severity, occurrence, and detectability. The results showed that the highest components of the risk priority number among components were condenser, transformer, MCCB and LA. And In case of the criticality estimation, the potential failure modes were abnormal temperature rise, insulation oil leakage, deterioration for the transformer, overcurrent for the MCCB and operation outage fir the LA.

Application of Quantitative Assessment of Coronary Atherosclerosis by Coronary Computed Tomographic Angiography

  • Su Nam Lee;Andrew Lin;Damini Dey;Daniel S. Berman;Donghee Han
    • Korean Journal of Radiology
    • /
    • v.25 no.6
    • /
    • pp.518-539
    • /
    • 2024
  • Coronary computed tomography angiography (CCTA) has emerged as a pivotal tool for diagnosing and risk-stratifying patients with suspected coronary artery disease (CAD). Recent advancements in image analysis and artificial intelligence (AI) techniques have enabled the comprehensive quantitative analysis of coronary atherosclerosis. Fully quantitative assessments of coronary stenosis and lumen attenuation have improved the accuracy of assessing stenosis severity and predicting hemodynamically significant lesions. In addition to stenosis evaluation, quantitative plaque analysis plays a crucial role in predicting and monitoring CAD progression. Studies have demonstrated that the quantitative assessment of plaque subtypes based on CT attenuation provides a nuanced understanding of plaque characteristics and their association with cardiovascular events. Quantitative analysis of serial CCTA scans offers a unique perspective on the impact of medical therapies on plaque modification. However, challenges such as time-intensive analyses and variability in software platforms still need to be addressed for broader clinical implementation. The paradigm of CCTA has shifted towards comprehensive quantitative plaque analysis facilitated by technological advancements. As these methods continue to evolve, their integration into routine clinical practice has the potential to enhance risk assessment and guide individualized patient management. This article reviews the evolving landscape of quantitative plaque analysis in CCTA and explores its applications and limitations.

Percentile Approach of Drought Severity Classification in Evaporative Stress Index for South Korea (Evaporative Stress Index (ESI)의 국내 가뭄 심도 분류 기준 제시)

  • Lee, Hee-Jin;Nam, Won-Ho;Yoon, Dong-Hyun;Hong, Eun-Mi;Kim, Taegon;Park, Jong-Hwan;Kim, Dae-Eui
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.62 no.2
    • /
    • pp.63-73
    • /
    • 2020
  • Drought is considered as a devastating hazard that causes serious agricultural, ecological and socio-economic impacts worldwide. Fundamentally, the drought can be defined as temporarily different levels of inadequate precipitation, soil moisture, and water supply relative to the long-term average conditions. From no unified definition of droughts, droughts have been divided into different severity level, i.e., moderate drought, severe drought, extreme drought and exceptional drought. The drought severity classification defined the ranges for each indicator for each dryness level. Because the ranges of the various indicators often don't coincide, the final drought category tends to be based on what the majority of the indicators show and on local observations. Evaporative Stress Index (ESI), a satellite-based drought index using the ratio of potential and actual evaporation, is being used as a index of the droughts occurring rapidly in a short period of time from studies showing a more sensitive and fast response to drought compared to Standardized Precipitation Index (SPI), and Palmer Drought Severity Index (PDSI). However, ESI is difficult to provide an objective drought assessment because it does not have clear drought severity classification criteria. In this study, U.S. Drought Monitor (USDM), the standard for drought determination used in the United States, was applied to ESI, and the Percentile method was used to classify drought categories by severity. Regarding the actual 2017 drought event in South Korea, we compare the spatial distribution of drought area and understand the USDM-based ESI by comparing the results of Standardized Groundwater level Index (SGI) and drought impact information. These results demonstrated that the USDM-based ESI could be an effective tool to provide objective drought conditions to inform management decisions for drought policy.

Detection of flexural damage stages for RC beams using Piezoelectric sensors (PZT)

  • Karayannis, Chris G.;Voutetaki, Maristella E.;Chalioris, Constantin E.;Providakis, Costas P.;Angeli, Georgia M.
    • Smart Structures and Systems
    • /
    • v.15 no.4
    • /
    • pp.997-1018
    • /
    • 2015
  • Structural health monitoring along with damage detection and assessment of its severity level in non-accessible reinforced concrete members using piezoelectric materials becomes essential since engineers often face the problem of detecting hidden damage. In this study, the potential of the detection of flexural damage state in the lower part of the mid-span area of a simply supported reinforced concrete beam using piezoelectric sensors is analytically investigated. Two common severity levels of flexural damage are examined: (i) cracking of concrete that extends from the external lower fiber of concrete up to the steel reinforcement and (ii) yielding of reinforcing bars that occurs for higher levels of bending moment and after the flexural cracking. The purpose of this investigation is to apply finite element modeling using admittance based signature data to analyze its accuracy and to check the potential use of this technique to monitor structural damage in real-time. It has been indicated that damage detection capability greatly depends on the frequency selection rather than on the level of the harmonic excitation loading. This way, the excitation loading sequence can have a level low enough that the technique may be considered as applicable and effective for real structures. Further, it is concluded that the closest applied piezoelectric sensor to the flexural damage demonstrates higher overall sensitivity to structural damage in the entire frequency band for both damage states with respect to the other used sensors. However, the observed sensitivity of the other sensors becomes comparatively high in the peak values of the root mean square deviation index.

Damage detection of railway bridges using operational vibration data: theory and experimental verifications

  • Azim, Md Riasat;Zhang, Haiyang;Gul, Mustafa
    • Structural Monitoring and Maintenance
    • /
    • v.7 no.2
    • /
    • pp.149-166
    • /
    • 2020
  • This paper presents the results of an experimental investigation on a vibration-based damage identification framework for a steel girder type and a truss bridge based on acceleration responses to operational loading. The method relies on sensor clustering-based time-series analysis of the operational acceleration response of the bridge to the passage of a moving vehicle. The results are presented in terms of Damage Features from each sensor, which are obtained by comparing the actual acceleration response from the sensors to the predicted response from the time-series model. The damage in the bridge is detected by observing the change in damage features of the bridge as structural changes occur in the bridge. The relative severity of the damage can also be quantitatively assessed by observing the magnitude of the changes in the damage features. The experimental results show the potential usefulness of the proposed method for future applications on condition assessment of real-life bridge infrastructures.