• Title/Summary/Keyword: potential retarding influence

Search Result 3, Processing Time 0.018 seconds

Insight into influence of iron addition in membrane bioreactor on gel layer fouling

  • Zhang, Haifeng;Lu, Xin;Yu, Haihuan;Song, Lianfa
    • Membrane and Water Treatment
    • /
    • v.8 no.6
    • /
    • pp.543-551
    • /
    • 2017
  • Membrane fouling in membrane bioreactor (MBR) remains a primary challenge for its wider application. The focus of this study to investigate the influence of iron distribution in activated sludge on gel layer fouling in MBR. Significant reduction in the transmembrane pressure (TMP) rise rates was observed in the presence of iron as result of retarding the gel layer formation time. The spatial distribution of iron had a significant impact on the stratification structure of extracellular polymeric substances (EPS) fractions, such as proteins (PN) and polysaccharides (PS). A mitigation of PN or PS from the supernatant to the EPS inner layers was observed in the presence of iron. Compared with the control reactor, the reduction in PN and PS of the supernatant and lower PN/PS rates of the LB-EPS were beneficial to decrease the membrane fouling potential during the gel layer formation. Consequently, the iron addition managed to control gel layer fouling could be a useful strategy in MBR.

The Changes of Specific Surface Area of Soils after Peroxidation and Its Implication for the Calculation of Critical toads of Soil Acidification (Peroxidation 전후의 토양 비표면적 변화와 토양산성화 임계부하량 계산에의 의의)

  • Yeo, Sang-Jin;Lee, Bumhan;Soyoung Sung;Kim, Soo-Jin
    • Journal of the Mineralogical Society of Korea
    • /
    • v.15 no.3
    • /
    • pp.195-204
    • /
    • 2002
  • Mineralogy and the exposed surface area are two of the most important factors controlling dissolution and weathering rates of soils. The mixture of inorganic and organic materials of various size distributions and structures that constitute soils makes the calculation of weathering rates difficult. The surface area of soil minerals plays an important role in most of programs for calculating the weathering rates and critical loads. The Brunauer-Emmett-Teller (BET) measurement is recommended for the measurement of specific surface area. However, BET values measured without organic matter removal are in fact those far all the N2-adsorbed surface areas, including the surfaces covered and aggregated with organisms. Surfaces occupied by organisms are assumed to be more reactive to weathering by organic activities. Therefore, the BET surface area difference before and after organic removal depicts the area occupied by organisms. The present study shows that the BET values after organic matter removal using $H_2$O$_2$ are larger than those without removal by 1.68~4.87 $m^2$/g. This implies that BET measurement without organic removal excludes the reactive area occupied by organisms and that the area occupied by organisms in soils is much larger than expected. It is suggested that specific surface area measurement for calculating weathering rates of mineral soils should be made before and after organic matter removal. The results of a column experiment are presented to demonstrate the potential retarding influence that this organic matter may have on mineral dissolution and weathering.

Simulation of Energy Resolution of Time of Flight System for Measuring Positron-annihilation induced Auger Electrons (양전자 소멸 Auger 전자 에너지 측정을 위한 Time of Flight의 분해도 향상에 관한 이론적 연구)

  • Kim, J.H.;Yang, T.K.;Lee, C.Y.;Lee, B.C.
    • Journal of the Korean Vacuum Society
    • /
    • v.17 no.4
    • /
    • pp.311-316
    • /
    • 2008
  • Since the presence of the chemical impurities and defect at surfaces and interfaces greatly influence the properties of various semiconductor devices, an unambiguous chemical characterization of the metal and semiconductor surfaces become more important in the view of the miniaturization of the devices toward nano scale. Among the various conventional surface characterization tools, Electron-induced Auger Electron Spectroscopy (EAES), X-ray Photoelectron Spectroscopy (XPS) and Secondary Electron Ion Mass Spectroscopy (SIMS) are being used for the identification of the surface chemical impurities. Recently, a novel surface characterizaion technique, Positron-annihilation induced Auger Electron Spectroscopy (PAES) is introduced to provide a unique method for the analysis of the elemental composition of the top-most atomic layer. In PAES, monoenergetic positron of a few eV are implanted to the surface under study and these positrons become thermalized near the surface. A fraction of the thermalized positron trapped at the surface state annihilate with the neighboring core-level electrons, creating core-hole excitations, which initiate the Auger process with the emission of Auger electrons almost simultaneously with the emission of annihilating gamma-rays. The energy of electrons is generally determined by employing ExB energy selector, which shows a poor resolution of $6{\sim}10eV$. In this paper, time-of-flight system is employed to measure the electrons energy with an enhanced energy resolution. The experimental result is compared with simulation results in the case of both linear (with retarding tube) and reflected TOF systems.