• Title/Summary/Keyword: potential outliers

Search Result 32, Processing Time 0.02 seconds

Improved Lexicon-driven based Chord Symbol Recognition in Musical Images

  • Dinh, Cong Minh;Do, Luu Ngoc;Yang, Hyung-Jeong;Kim, Soo-Hyung;Lee, Guee-Sang
    • International Journal of Contents
    • /
    • v.12 no.4
    • /
    • pp.53-61
    • /
    • 2016
  • Although extensively developed, optical music recognition systems have mostly focused on musical symbols (notes, rests, etc.), while disregarding the chord symbols. The process becomes difficult when the images are distorted or slurred, although this can be resolved using optical character recognition systems. Moreover, the appearance of outliers (lyrics, dynamics, etc.) increases the complexity of the chord recognition. Therefore, we propose a new approach addressing these issues. After binarization, un-distortion, and stave and lyric removal of a musical image, a rule-based method is applied to detect the potential regions of chord symbols. Next, a lexicon-driven approach is used to optimally and simultaneously separate and recognize characters. The score that is returned from the recognition process is used to detect the outliers. The effectiveness of our system is demonstrated through impressive accuracy of experimental results on two datasets having a variety of resolutions.

Study on the applicability of the principal component analysis for detecting leaks in water pipe networks (상수관망의 누수감지를 위한 주성분 분석의 적용 가능성에 대한 연구)

  • Kim, Kimin;Park, Suwan
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.33 no.2
    • /
    • pp.159-167
    • /
    • 2019
  • In this paper the potential of the principal component analysis(PCA) technique for the application of detecting leaks in water pipe networks was evaluated. For this purpose the PCA was conducted to evaluate the relevance of the calculated outliers of a PCA model utilizing the recorded pipe flows and the recorded pipe leak incidents of a case study water distribution system. The PCA technique was enhanced by applying the computational algorithms developed in this study which were designed to extract a partial set of flow data from the original 24 hour flow data so that the effective outlier detection rate was maximized. The relevance of the calculated outliers of a PCA model and the recorded pipe leak incidents was analyzed. The developed algorithm may be applied in determining further leak detection field work for water distribution blocks that have more than 70% of the effective outlier detection rate. However, the analysis suggested that further development on the algorithm is needed to enhance the applicability of the PCA in detecting leaks by considering series of leak reports happening in a relatively short period.

Visible Assessment of Earthquake-induced Geotechnical Hazards by Adopting Integrated Geospatial Database in Coastal Facility Areas (복합 공간데이터베이스 적용을 통한 해안 시설영역 지진 유발 지반재해의 가시적 평가)

  • Kim, Han-Saem;Sun, Chang-Guk
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.20 no.3
    • /
    • pp.171-180
    • /
    • 2016
  • Earthquake event keeps increasing every year, and the recent cases of earthquake hazards invoke the necessity of seismic study in Korea, as geotechnical earthquake hazards, such as strong ground motion, liquefaction and landslides, are a significant threat to structures in industrial hub areas including coastal facilities. In this study, systemized framework of integrated assessment of earthquake-induced geotechnical hazard was established using advanced geospatial database. And a visible simulation of the framework was specifically conducted at two coastal facility areas in Incheon. First, the geospatial-grid information in the 3D domain were constructed with geostatistical interpolation method composed of multiple geospatial coverage mapping and 3D integration of geo-layer construction considering spatial outliers and geotechnical uncertainty. Second, the behavior of site-specific seismic responses were assessed by incorporating the depth to bedrock, mean shear wave velocity of the upper 30 m, and characteristic site period based on the geospatial-grid. Third, the normalized correlations between rock-outcrop accelerations and the maximum accelerations of each grid were determined considering the site-specific seismic response characteristics. Fourth, the potential damage due to liquefaction was estimated by combining the geospatial-grid and accelerations correlation grid based on the simplified liquefaction potential index evaluation method.

A Stereo Matching Algorithm with Projective Distortion of Variable Windows (가변 윈도우의 투영왜곡을 고려한 스테레오 정합 알고리듬)

  • Kim, Gyeong-Beom;Jeong, Seong-Jong
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.25 no.3
    • /
    • pp.461-469
    • /
    • 2001
  • Existing area-based stereo algorithms rely heavily on rectangular windows for computing correspondence. While the algorithms with the rectangular windows are efficient, they generate relatively large matching errors due to variations of disparity profiles near depth discontinuities and doesnt take into account local deformations of the windows due to projective distortion. In this paper, in order to deal with these problems, a new correlation function with 4 directional line masks, based on robust estimator, is proposed for the selection of potential matching points. These points is selected to consider depth discontinuities and reduce effects on outliers. The proposed matching method finds an arbitrarily-shaped variable window around a pixel in the 3d array which is constructed with the selected matching points. In addition, the method take into account the local deformation of the variable window with a constant disparity, and perform the estimation of sub-pixel disparities. Experiments with various synthetic images show that the proposed technique significantly reduces matching errors both in the vicinity of depth discontinuities and in continuously smooth areas, and also does not be affected drastically due to outlier and noise.

Deep learning-based anomaly detection in acceleration data of long-span cable-stayed bridges

  • Seungjun Lee;Jaebeom Lee;Minsun Kim;Sangmok Lee;Young-Joo Lee
    • Smart Structures and Systems
    • /
    • v.33 no.2
    • /
    • pp.93-103
    • /
    • 2024
  • Despite the rapid development of sensors, structural health monitoring (SHM) still faces challenges in monitoring due to the degradation of devices and harsh environmental loads. These challenges can lead to measurement errors, missing data, or outliers, which can affect the accuracy and reliability of SHM systems. To address this problem, this study proposes a classification method that detects anomaly patterns in sensor data. The proposed classification method involves several steps. First, data scaling is conducted to adjust the scale of the raw data, which may have different magnitudes and ranges. This step ensures that the data is on the same scale, facilitating the comparison of data across different sensors. Next, informative features in the time and frequency domains are extracted and used as input for a deep neural network model. The model can effectively detect the most probable anomaly pattern, allowing for the timely identification of potential issues. To demonstrate the effectiveness of the proposed method, it was applied to actual data obtained from a long-span cable-stayed bridge in China. The results of the study have successfully verified the proposed method's applicability to practical SHM systems for civil infrastructures. The method has the potential to significantly enhance the safety and reliability of civil infrastructures by detecting potential issues and anomalies at an early stage.

AGE ESTIMATION TECHNIQUE OF INDUSTRIALIZED TIMBER PLANTATION USING VARIOUS REMOTE SENSING DATA

  • Kim, Jong-Hong;Heo, Joon;Park, Ji-Sang
    • Proceedings of the KSRS Conference
    • /
    • v.1
    • /
    • pp.94-97
    • /
    • 2006
  • Timber stand age information of timber in industrialized plantation forest is generally collected by field surveying which is labor-intensive, time-consuming, and very costly. It is also inconsistent in analyses perspective. As an alternative, The objective of this research is to present a practical solution for estimating timber age of loblolly pine plantation using Landsat thematic mapper (TM) images, shuttle radar topography mission (SRTM), and national elevation dataset (NED). A multivariate regression model was developed based upon satellite image-based information (i.e.normalized difference vegetation index (NDVI), tasseled cap (TC) transformation, and derived tree heights). A residual studentized technique was applied to remove potential outliers. After that, a refined age estimation model with a correlation coefficient R-square of 84.6% was obtained. Finally, the feasibility test of estimated model was performed by comparing estimated and measured stand ages of timber plantations using test datasets of plantation stands (2,032 stands). The result shows that the proposed method of this study can estimate loblolly pine stand age within an error of $2{\sim}3$ years in an effective and consistent way in terms of time and cost.

  • PDF

The Impact of Foreign Ownership on Stock Price Volatility: Evidence from Thailand

  • THANATAWEE, Yordying
    • The Journal of Asian Finance, Economics and Business
    • /
    • v.8 no.1
    • /
    • pp.7-14
    • /
    • 2021
  • This paper examines the impact of foreign ownership on stock price volatility in an emerging market, namely, Thailand. The data were obtained from SETSMART, the database of the Stock Exchange of Thailand (SET). After removing financial firms, banks, and insurance companies as well as filtering outliers, the final sample covers 1,755 firm-year observations from 371 nonfinancial firms listed on the SET over the five-year period from 2014 to 2018. The regression model consists of stock price volatility, measured by two methods, as the dependent variable, foreign ownership as the main independent variable, and firm characteristics including firm size, leverage, market-to book ratio, and stock turnover as the control variables. The pooled OLS, fixed effects, and random effects estimations are employed to examine the relationship between foreign ownership and stock price volatility. The results reveal that foreign ownership has a negative and significant impact on stock price volatility. The two-stage least squares (2SLS) are also performed to address potential endogeneity problem. The results still indicate a negative relationship between foreign ownership and stock price volatility. Taken together, the findings of this study suggest that foreign investors help reduce stock price volatility and thus stabilize share price in the Thai stock market.

Monitoring in a reinforced concrete structure for storing low and intermediate level radioactive waste. Lessons learnt after 25 years

  • Nuria Rebolledo;Julio Torres;Servando Chinchon-Paya;Javier Sanchez;Sylvia de Gregorio;Manuel Ordonez;Inmaculada Lopez
    • Nuclear Engineering and Technology
    • /
    • v.55 no.4
    • /
    • pp.1199-1209
    • /
    • 2023
  • Where concrete structures are designed to have a service life of over 100 years, their performance must be monitored, for the prediction models available are fraught with uncertainties that need to be eliminated. The present study was conducted to meet that need by monitoring a pilot structure for low and intermediate radioactive waste storage. Long-term operation of the sensors was observed to be adequate to determine the value of the parameters that characterise structural durability, such as corrosion current density. The parameters analysed were correlated to calculate their reciprocal impact: where applied in conjunction with artificial intelligence tools, temperature, for instance, was found suitable for finding activation energy and expansion coefficients and detecting outliers. The results showed the pilot structure to perform satisfactorily.

Development of Ubiquitous Sensor Network Quality Control Algorithm for Highland Cabbage (고랭지배추 생육을 위한 유비쿼터스 센서 네트워크 품질관리 알고리즘 개발)

  • Cho, Changje;Hwang, Guenbo;Yoon, Sanghoo
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.20 no.4
    • /
    • pp.337-347
    • /
    • 2018
  • Weather causes much of the risk of agricultural activity. For efficient farming, we need to use weather information. Modern agriculture has been developed to create high added value through convergence with state-of-the-art Information and Communication Technology (ICT). This study deals with the quality control algorithms of weather monitoring equipment through Ubiquitous Sensor Network (USN) observational equipment for efficient cultivation of cabbage. Accurate weather observations are important. To achieve this goal, the Korea Meteorological Administration, for example, developed various quality control algorithms to determine regularity of the observation. The research data of this study were obtained from five USN stations, which were installed in Anbandegi and Gwinemi from 2015 to 2017. Quality control algorithms were developed for flat line check, temporal outliers check, time series consistency check and spatial outliers check. Finally, the quality control algorithms proposed in this study can also identify potential abnormal observations taking into account the temporal and spatial characteristics of weather data. It is expected to be useful for efficient management of highland cabbage production by providing quality-controlled weather data.

Time Series Patterns and Clustering of Rotifer Community in Relation with Topographical Characteristics in Lentic Ecosystems (정수생태계의 지형적인 요인 변화와 윤충류 출현 종 수 및 개체군 밀도 변동에 대한 연구)

  • Oh, Hye-Ji;Heo, Yu-Ji;Chang, Kwang-Hyeon;Kim, Hyun-Woo
    • Korean Journal of Ecology and Environment
    • /
    • v.54 no.4
    • /
    • pp.390-397
    • /
    • 2021
  • The time series data of rotifer community focusing on the species number and total density were collected from 29 reservoirs located at Jeonnam Province from 2008 to 2016 quarterly. The reservoirs had similar weather condition during the study period, but their sizes and water qualities were different. To analyze the temporal dynamics of rotifer community, the medians, ranges, outliers and coefficient of variation (CV) value of rotifer species number and abundance were compared. For the temporal trend analysis, time series of each reservoir data were compared and clustered using the dynamic time warping function of the R package "dtwclust". Small-sized reservoirs showed higher variability in rotifer abundance with more frequent outliers than large-sized reservoirs. On the other hand, apparent pattern was not observed for the rotifer species number. For the temporal pattern of rotifer density, COD, phytoplankton abundance fluctuation, and cladoceran abundance fluctuation have been suggested as potential factor affecting the rotifer abundance dynamics.