• Title/Summary/Keyword: potential limiting nutrient

Search Result 22, Processing Time 0.015 seconds

The Water Quality in the Soho Coastal Seawaters of Gamak Bay Before and After a Typhoon (가막만 소호해역에서 태풍 전후 수질 변동특성)

  • Lee Young-Sik;Moon Seong-Yong
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.11 no.3
    • /
    • pp.117-123
    • /
    • 2006
  • The water quality before and after a typhoon was investigated as a part of a study on the increase of organic matter and on the fundamental measures to counter chemical oxygen demand (COD) in the eutrophic Soho coastal seawaters of Gamak Bay. The dissolved oxygen (DO) saturations were <54% when water column was stratified. The DO saturation was similar at surface and in the bottom layer after a typhoon $(78\sim88%)$, and a very high DO saturation (234%) was observed in the surface water after mass phytoplankton growth. The highest values of $NH_4-N,\;NO_3-N,\;PO_4-P$, and $SiO_2-Si$ were 18.22, 38.90, 1.58, and $52.10{\mu}M$, respectively, when freshwater entered after heavy rainfall events. In addition, high concentrations of $NH_4-N,\;PO_4-P$, and $SiO_2-Si$ were detected with low DO saturations in bottom water (>5m). A maximum chlorophyll (Chl.) concentration of $311.0{\mu}gl^{-1}$ was observed after typhoon, when a high-density Scrippsiella trochoidea red tide occurred with cell density of 42,000 cells $ml^{-1}$. The algal growth potential (AGP) was high after the typhoon. Nitrogen was always a limiting nutrient for phytoplankton growth. The highest COD level was $10.55mgl^{-1}$, and the main reason of the variation in COD was likely to be phytoplankton growth $(r^2=0.612,\;p=0.000)$. Organic matter, which entered the water column when the typhoon stirred the sediments, seems to have little effects on COD increase.

Influence of the Asian Monsoon on Seasonal Fluctuations of Water Quality in a Mountainous Stream (산간 계류성 하천의 계절적 수질변동에 대한 몬순강우의 영향)

  • Shin, In-Chul;An, Kwang-Guk
    • Korean Journal of Ecology and Environment
    • /
    • v.38 no.1 s.110
    • /
    • pp.54-62
    • /
    • 2005
  • The present study was to determine how seasonal rainfall intensity influences nutrient dynamics, ionic contents, oxygen demands, and suspended solids in a lotic ecosystem. Largest seasonal variabilities in most parameters occurred during the two months of July to August and these were closely associated with large spate of rainfall. Dissolved oxygen (DO) had an inverse function of water temperature (r = = = - 0.986, p<0.001). Minimum pH values of<6.5 were observed in the late August when rainfall peaked in the study site, indicating an ionic dilution of stream water by precipitation. Electrical conductivity (EC) was greater during summer than any other seasons, so the overall conductivity values had direct correlation (r = 0.527, p<0.01) with precipitation. Ionic dilution, however, was evident 4 ${\sim}$ 5 days later in short or 1 ${\sim}$ 2 weeks in long after the intense rain, indicating a time-lag phenomenon of conductivity. Daily COD values varied from 0.8 mg $L^{-1}$ to 7.9 mg $L^{-1}$ and their seasonal pattern was similar (r = 0.548, p<0.001) to that of BOD. Total nitrogen (TN) varied little compared to total phosphorus (TP) and was minimum in the base flow of March. In contrast, major input of TP occurred during the period of summer monsoon and this pattern was similar to suspended solids, implying that TP is closely associated (r = 0.890, p<0.01) with suspended inorganic solids. Mass ratios of TN : TP were determined by TP (r= -0.509, p<0.01) rather than TN (r= -0.209, p<0.01). The N : P ratios indicated that phosphorus was a potential primary limiting nutrient for the stream productivity. Overall data suggest that rainfall intensity was considered as a primary key component regulating water chemistry in the stream and maximum variation in water quality was attributed to the largest runoff spate during the summer monsoon.