• Title/Summary/Keyword: potential flood damage

Search Result 72, Processing Time 0.02 seconds

A Study on Potential Flood Damage Classification and characteristic analysis (시군별 홍수위험잠재능 유형화 및 특성분석)

  • Kim, Soo-Jin;Eun, Sang-Kyu;Kim, Seong-Pil;Bae, Seung-Jong
    • Journal of Korean Society of Rural Planning
    • /
    • v.23 no.3
    • /
    • pp.21-36
    • /
    • 2017
  • Climate change is intensifying storms and floods around the world. Where nature has been destroyed by development, communities are at risk from these intensified climate patterns. This study was to suggest a methodology for estimating flood vulnerability using Potential Flood Damage(PFD) concept and classify city/county about Potential Flood Damage(PFD) using various typology techniques. To evaluate the PFD at a spatial resolutions of city/county units, the 20 representative evaluation indexing factors were carefully selected for the three categories such as damage target(FDT), damage potential(FDP) and prevention ability(FPA). The three flood vulnerability indices of FDT, FDP and FPA were applied for the 167 cities and counties in Korea for the pattern classification of potential flood damage. Potential Flood Damage(PFD) was classified by using grouping analysis, decision tree analysis, and cluster analysis, and characteristics of each type were analyzed. It is expected that the suggested PFD can be utilized as the useful flood vulnerability index for more rational and practical risk management plans against flood damage.

Assessment of Potential Flood Damage Considering Regional Flood Damage Cycle (지역별 홍수피해주기를 고려한 홍수위험잠재능 평가)

  • Kim, Soo-jin;Bae, Seung-jong;Kim, Seong-pil;Bae, Yeon-Joung
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.57 no.4
    • /
    • pp.143-151
    • /
    • 2015
  • Recently, flood has been increased due to climate change resulting in numerous damages for humans and properties. The main objective of this study was to suggest a methodology to estimate the flood vulnerability using Potential Flood Damage (PFD) concept. To evaluate the PFD at a spatial resolutions of city/county units, the 19 representative evaluation indexing factors were carefully selected for the three categories such as damage target ($F_{DT}$), damage potential ($F_{DP}$) and prevention ability ($F_{PA}$). The three flood vulnerability indices of $F_{DT}$, $F_{DP}$ and $F_{PA}$ were applied for the 162 cities and counties in Korea for the pattern classification of potential flood damage. It is expected that the supposed PFD can be utilized as the useful flood vulnerability index for more rational and practical protection plans against flood damage.

Development and Evaluation of Potential Flood Damage Index for Public Facilities (공공시설물 잠재홍수피해지수 체계 개발 및 평가)

  • Kim, Gilho;Baeck, Seung Hyub;Jung, Younghun;Kim, Kyungtak
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.58 no.4
    • /
    • pp.97-106
    • /
    • 2016
  • Since public facilities have high property values and are directly exposed to the flood hazard, they account for the highest share of disaster damages compared to other assets such as housing, industry, vehicle and agriculture in case of floods. Therefore, this study was conducted to develop and suggest the potential flood damage index for public facilities to evaluate potential flood damage of specific local government directly or indirectly as a tool for decision-making related to flood prevention, maintenance, management, and budget allocation. The flood damage assessment system proposed in this study was evaluated in 231 local governments nationwide. Evaluation results showed that higher values were obtained in Seoul metropolitan government, Gyeonggi-do (province), coastal areas in Gyeongsangnam-do (province), and Jeju island.

Flood Damage Index regarding Regional Flood Damage Characteristics (지역별 홍수피해특성을 고려한 홍수피해지표 개발)

  • Park, Taesun;Yeo, Chang Geon;Choi, Minha;Lee, Seung Oh
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.30 no.4B
    • /
    • pp.361-366
    • /
    • 2010
  • It would be helpful to evaluate the potential flood damage and compare quantitatively with each other when establishing the regional flood countermeasure and determining the execution of the restoration works and emergency action plans. The Flood Damage Index (FDI) in Korea, possible to estimate localized potential risks caused by flood damages, therefore, was proposed in this study. It was considered with the scale of regional flood damages including the regional characteristics and quantitative grounds. First, the four significant causes were categorized as natural, social, politic, and facilitative ones. And the eleven selected factors representing four causes were determined. Finally, the FDI was obtained by the weighting linear summation of the corrected 11 factors multiplied by the weighting values based on the professional questionnaires. Employing the FDI, the potential risk analysis about flood damages for 229 cities and counties in Korea was conducted. These results would be utilized as the essential basis for more rational and practical countermeasures and plans against flood damage.

Sub-Components Evaluation Method of Potential Flood Damage Considering Yearly Change and Improved Method (연도별 변화와 개선된 방법을 고려한 홍수피해잠재능의 세부 항목 평가 방안)

  • Hong, Seungjin;Joo, Hongjun;Kim, Kyoungtak;Kim, Hung Soo
    • Journal of Wetlands Research
    • /
    • v.20 no.4
    • /
    • pp.370-382
    • /
    • 2018
  • The purpose of this study is to quantitatively and effectively evaluate the factors affecting flood damage by watershed. National Water Resource Plan(MOCT, 2001) has been developed Potential Flood Damage(PFD) which indicates flood vulnerability. But, it is only a simple grouping and it does not provide guidelines for flood control planning based on detailed evaluation of sub-components. In this study, we used PFD in the Han River basin according to the method applied in the National Water Resource Plan (existing method) and improvement based on actual flood hazard area and data. As an application method, after analyzing by yearly change(2009~2014), we compared and analyzed the tendency of the sub - components that constitute the potential and risk rather than the current grouping. As the result, it was possible to accurately evaluate the existing and improved methods, and it was possible to derive the vulnerability rankings, but the existing methods have different results from the actual watershed tendency. Therefore, the PFD of the improvement method that correctly reflects past history and watershed characteristics is more appropriate for the evaluation of flood vulnerability in the watershed. In addition, it is reasonable to establish a flood control plan referring to this and prevent flood damage in advance.

Study on the Improvement Method of Flood Risk Assessment by Flood Damage Area (홍수피해예상지역을 고려한 홍수위험도 산정기법 개선방안 연구)

  • Hong, Seungjin;Joo, Hongjun;Kim, Kyungtak
    • Journal of Wetlands Research
    • /
    • v.19 no.4
    • /
    • pp.459-469
    • /
    • 2017
  • The aim of this study is to improve Potential Flood Damage(PFD) that a flood risk assessment technique used in the National Water Resource Plan comprehensive plan for water resources, which is a top-level plan related to domestic water resources and Flood Risk Indices. Both methods are used to evaluate flood control risks. However, there is a problem of reliability because the problem of data utilization and the damage that occurred in a specific area are applied as an average concept. Therefore, this study improved the method for analysis by components and the flood inundation area was limited to flood damage area. Also, the improvement of the method and the application of the recently provided GIS data to the flood damage prediction area were proposed to improve the usability of the existing method. The existing analysis method and the improved method were applied to the test watershed by each case.

Identification of Flooded Areas and Post-flooding Conditions: Developing Flood Damage Mitigation Strategies Using Satellite Radar Imagery (레이더 위성영상을 활용한 침수피해 지역 파악 및 완화방안 연구)

  • Lee, Moungjin;Myeong, Soojeong;Jeon, Seongwoo;Won, Joong-Sun
    • Journal of Environmental Policy
    • /
    • v.8 no.2
    • /
    • pp.1-23
    • /
    • 2009
  • This study applied satellite radar imagery to identify flooded areas and examined post-flooding conditions using time-series satellite radar imagery for the development of flood damage mitigation strategies. Using time-series satellite radar images, this study constructed a map delineating areas vulnerable to frequent flood damage. The extracted flooded areas were combined with reference land use maps to examine flood damage by land use type. Major landuse types with severe flood damage were agricultural and forested areas. The analysis of the damage conditions, in terms of land use, served as the basis for developing flood damage mitigation policies, in conjunction with land use planning. The policies for flood damage mitigation can be summarized as land use regulations, land use planning, and flood damage mapping. A preventive measure to minimize flood damage of properties, which regulates developing areas with high flooding potential, is highly recommended. Although this study suggested a number of policies for flood damage mitigation, they represent only a small number of possible policies useful for mitigating flood damage and other environmental problems. Based upon the results of this study, it may be concluded that satellite radar imagery has great potential in providing basic data for large-scale environmental problems such as flooding and oil spills. Nevertheless, further examinations should be conducted and the application of satellite radar imagery should be used to examine other environmental problems.

  • PDF

Flood Risk Estimation Using Regional Regression Analysis (지역회귀분석을 이용한 홍수피해위험도 산정)

  • Jang, Ock-Jae;Kim, Young-Oh
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.9 no.4
    • /
    • pp.71-80
    • /
    • 2009
  • Although desire for living without hazardous damages grows these days, threats from natural disasters which we are currently exposed to are quiet different from what we have experienced. To cope with this changing situation, it is necessary to assess the characteristics of the natural disasters. Therefore, the main purpose of this research is to suggest a methodology to estimate the potential property loss and assess the flood risk using a regional regression analysis. Since the flood damage mainly consists of loss of lives and property damages, it is reasonable to express the results of a flood risk assessment with the loss of lives and the property damages that are vulnerable to flood. The regional regression analysis has been commonly used to find relationships between regional characteristics of a watershed and parameters of rainfall-runoff models or probability distribution models. In our research, however, this model is applied to estimate the potential flood damage as follows; 1) a nonlinear model between the flood damage and the hourly rainfall is found in gauged regions which have sufficient damage and rainfall data, and 2) a regression model is developed from the relationship between the coefficients of the nonlinear models and socio-economic indicators in the gauged regions. This method enables us to quantitatively analyze the impact of the regional indicators on the flood damage and to estimate the damage through the application of the regional regression model to ungauged regions which do not have sufficient data. Moreover the flood risk map is developed by Flood Vulnerability Index (FVI) which is equal to the ratio of the estimated flood damage to the total regional property. Comparing the results of this research with Potential Flood Damage (PFD) reported in the Long-term Korea National Water Resources Plan, the exports' mistaken opinions could affect the weighting procedure of PFD, but the proposed approach based on the regional regression would overcome the drawback of PFD. It was found that FVI is highly correlated with the past damage, while PFD does not reflect the regional vulnerabilities.

Improvement and evaluation of flood control safety utilizing a flood risk map - Yeong-Seomjin River Basin - (홍수위험지도를 활용한 치수안전도 방법 개선 및 평가 - 영·섬진강 유역중심으로 -)

  • Eo, Gyu;Lee, Sung Hyun;Lim In Gyu;Lee, Gyu Won;Kim, Ji Sung
    • Journal of Korea Water Resources Association
    • /
    • v.57 no.1
    • /
    • pp.21-33
    • /
    • 2024
  • Recently, the patterns of climate change-induced disasters have become more diverse and extensive. To develop an effective flood control plan, Korea has incorporated the concept of Potential Flood Damage (PFD) into the Long-Term Comprehensive Water Resources Plan to assess flood risk. However, concerns regarding the PFD have prompted numerous studies. Previous research primarily focused on modifying and augmenting the PFD index or introducing new indices. This study aims to enhance the existing flood control safety evaluation method by utilizing a flood risk map that incorporates risk indices, specifically focusing on the Yeong-Seomjin river basin. The study introduces three main evaluation approaches: risk and potential analysis, PFD and flood management level analysis, and flood control safety evaluation. The proposed improved evaluation method is expected to be instrumental in evaluating various flood control safety measures and formulating flood control plans.

Risk of Flood Damage Potential and Design Frequency (홍수피해발생 잠재위험도와 기왕최대강수량을 이용한 설계빈도의 연계)

  • Park, Seok Geun;Lee, Keon Haeng;Kyung, Min Soo;Kim, Hung Soo
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.26 no.5B
    • /
    • pp.489-499
    • /
    • 2006
  • The Potential Flood Damage (PFD) is widely used for representing the degree of potential of flood damage. However, this cannot be related with the design frequency of river basin and so we have difficulty in the use of water resources field. Therefore, in this study, the concept of Potential Risk for Flood Damage Occurrence (PRFD) was introduced and estimated, which can be related to the design frequency. The PRFD has three important elements of hazard, exposure, and vulnerability. The hazard means a probability of occurrence of flood event, the exposure represents the degree that the property is exposed in the flood hazard, and the vulnerability represents the degree of weakness of the measures for flood prevention. Those elements were devided into some sub-elements. The hazard is explained by the frequency based rainfall, the exposure has two sub-elements which are population density and official land price, and the vulnerability has two sub-elements which are undevelopedness index and ability of flood defence. Each sub-elements are estimated and the estimated values are rearranged in the range of 0 to 100. The Analytic Hierarchy Process (AHP) is also applied to determine weighting coefficients in the equation of PRFD. The PRFD for the Anyang river basin and the design frequency are estimated by using the maximum rainfall. The existing design frequency for Anyang river basin is in the range of 50 to 200. And the design frequency estimation result of PRFD of this study is in the range of 110 to 130. Therefore, the developed method for the estimation of PRFD and the design frequency for the administrative districts are used and the method for the watershed and the river channel are to be applied in the future study.