• Title/Summary/Keyword: potential evapotranspiration

Search Result 147, Processing Time 0.026 seconds

EFFECT OF SOIL mOISTURE CONDITiON ON THE GROWTH AND EVAPOTRANSPIRATION OF THE TOBACCO PLANT (토양수분의 과, 부족이 연초의 생장과 증발산량에 미치는 영향)

  • 홍순달;이윤환;김재정;조성진
    • Journal of the Korean Society of Tobacco Science
    • /
    • v.7 no.1
    • /
    • pp.15-23
    • /
    • 1985
  • Growth response and evapotranspiration of tobacco as to each soil moisture condition treated with different height of ground water table such as 30cm, 100cm, 170cm, and 230cm were investigated. The results obtained were as follows; 1. Soil water potential in the rhizosphere (25cm depth from surface) treated with ground water table (G.W.T) of 230 cm was less than -6.5 bar at 60 days after transplanting. 2. Dry weight of leaves per plant was the highest in the pot treated with 100 cm G.W.T and was the lowest in the pot treated with 230 cm G.W.T.. Leaves/Stem ratio of dry weight was the lowest in the pot treated with 230 cm G.W.T. This would show that extension of leaves as compared with elongation of stem was suppressed. .3. In the roster stress condition of 230 cm G.W.T., extension of leaves was continued until the latter growth stage, Relative growth rate of leaf area per plant of the pot with 30 cm G.W.T. was the highest through all growth period after fixation of G.W.7., but owing to lower density of leaf, the dry weight of leaves per plant was less rather than that of the pot with 170 cm G.W.T. at 64 days after transplanting. 4. The highest evapotranspiration per plant per day was shown at the 45th day after transplanting in the pots with 30cm and 100cm G.W.T. and at 60 days in the pots with 170cm and 230cm G.W.T respectively. 5. In the soil moisture conditions with 30cm and 100cm G.W.T., evapotranspiration per plant per hour was much higher in the daytime that at night as well as in clear day than in rain-cloudy day owing to loner relative humidity , but in the water stress condition with 230 cm G.W.T., that was much lower. 6. Total evapotranspiration per plant during the whole growing period of 64 days was in order of 30cm > 100 cm > 170 cm > 230 cm G.W.T.. Total evapotranspiration for 34 days after fixation of G.W.T was much higher at night than in the daytime in case of water stress conditions i.e 170cm and 230cm G.W.T. but in normal condition of the pots with 30cm and 100cm G.W.T. that was much higher in the daytime than at night. 7. Leaf water potential of the 3rd and 6th leaf from top at 64 days after transplanting was in order of 100cm > 30 cm > 170cm > 230cm G.W.T. The reason why leaf water potential in the pot with 30cm was less than that in the pot with 100cm G.W.T. would be the abnormal turgidity with low density of cell substrates by the excess water absorption in the pot with 30cm G.W.T..

  • PDF

Estimating Evapotranspiration with the Complementary Relationship at Fluxnet Sites Over Asia (아시아 Fluxnet 자료를 활용한 보완관계 기반 증발산량 추정)

  • Seo, Hocheol;Kim, Jeongbin;Park, Hyesun;Kim, Yeonjoo
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.37 no.2
    • /
    • pp.303-310
    • /
    • 2017
  • Evapotranspiration is a significant hydrologic quantity for understanding the amount of available water resource evaluation, water balance analysis, water circulation and energy circulation. Various methods have been developed for estimating the evapotranspiration using data observed at meteorological observatories. Especially, the focus of methods has been on the complementary relationship that the actual evapotranspiration is equal to the difference between the twice of evapotranspiration in the wet condition and the potential evapotranspiration. The Granger and Gary (GG) method is an empirical formula that can be used to estimate the evapotranspiration using only empirical parameters based on the complementary relationship and using only the net radiation and temperature of the region. In this study, we compared the evapotranspiration data observed at 10 sites in Asia within the dataset of FLUXNET2015, with the evapotranspiration calculated by GG method. The evapotranspiration in inland area was estimated more accurately than that of coastal area. Simulated Annealing (SA) was used for the coastal area to modify the parameters. Using the modified GG method, we could improve the statistics such as root mean square error, the coefficient of determination ($R^2$), and the mean absolute ${\mid}BIAS{\mid}$ of the evapotranspiration estimation in coastal area.

Climate Change Impacts on Paddy Water Requirement (기후변화가 논 필요수량에 미치는 영향)

  • Yun, Dong-Koun;Chung, Sang-Ok;Kim, Seong-Joon
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.53 no.4
    • /
    • pp.39-47
    • /
    • 2011
  • The aim of the study is to predict potential evapotranspiration and crop water requirement using meteorological data from MIROC3.2 with A1B scenario. Increase of evapotranspiration due to temperature rise can be observed out of the analysis, while effective rainfall decreased. The evapotranspiration elevation results in large amount of crop water requirement in the paddy farming. It can be seen that rainfall intensification at non-irrigation period brings effective rainfall decrease, while contributes to higher demand of crop water at irrigation period. It is necessary to secure additional water resources to adapt the climate change. It is expected that estimation on potentialevapotranspiration in this study can be used for formulation of master plan of water resources.

Assessment of Reference Evapotranspiration Equations for Missing and Estimated Weather Data (기상자료의 결측과 산정에 따른 기준작물 증발산량 공식의 비교 평가)

  • Yoon, Pu Reun;Choi, Jin-Yong
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.60 no.3
    • /
    • pp.15-25
    • /
    • 2018
  • Estimating the reference evapotranspiration is an important factor to consider in irrigation system design and agricultural water use. However, there is a limitation in using the FAO Penman-Monteith (FAO P-M) equation, which requires various meteorological data. The purpose of this study is to compare three reference evapotranspiration (ETo) equations in the case of meteorological data missing for 11 study weather stations. Firstly, the FAO P-M equation is used for reference potential evapotranspiration estimation with the actual solar radiation data $R_n$ and the actual vapor pressure $e_a$. Then, in the case of $R_n$, and $e_a$ are missed, the reference evapotranspirations applying FAO P-M, Priestley-Taylor (P-T), Hargreaves (HG) equation were calculated using other meteorological factors. Secondly, MAE, RMSE, $R^2$ were calculated to compare ETo relationship from the ETo equations. From the results, ETo with Hargreaves equation in coastal areas and the Priestley-Taylor equation in the inland areas showed relatively high correlation with FAO P-M when $e_a$ data is missed. In the case of $R_n$ data is missed or two weather data, $e_a$, and $R_n$ data are all missed, $R^2$ value in Priestley-Taylor equation was highest in coastal areas, and $R^2$ values in Hargreaves equation were the high values for 7 inland areas. The results of sensitivity analysis showed that net radiation was the most sensitive for P-T and HG equation, and for FAO P-M, the most sensitive factor was net radiation and relative humidity, air temperature and wind speed were follows. Therefore, in considering of the accessibility to the coast, the types of the missing wether data, and the correlation and the magnitude of error, the reference evapotranspiration equations would be selected in sense of different conditions.

HOURLY VARIATION OF PENMAN EVAPOTRANSPIRATlON CONSIDERING SOIL MOISTURE CONDITION

  • Rim, Chang-Soo
    • Water Engineering Research
    • /
    • v.5 no.1
    • /
    • pp.1-16
    • /
    • 2004
  • The purpose of this study is to understand the characteristics of hourly PET(Potential Evapo Transpiration) variation estimated using Penman ET model. The estimated PET using Penman model was compared with measured ET. For this study, two subwatersheds were selected, and fluxes, meteorological data and soil moisture data were measured during the summer and winter days. During the winter days, the aerodynamic term of Penman ET is much greater than that of energy term of Penman ET for dry soil condition. The opposite phenomena appeared fer wet soil condition. During the summer days, energy term is much more important factor for ET estimation compared with aerodynamic term regardless of soil moisture condition. Penman ET, measured ET, and energy term show the similar hourly variation pattern mainly because the influence of net radiation on the estimation of Penman ET is much more significant compared with other variables. Even though there are much more soil moisture in the soil during the wet days, the estimated hourly ET from Penman model and measured hourly ET have smaller values compared with those of dry days, indicating the effect of cloudy weather condition.

  • PDF

PREDICTION OF UNMEASURED PET DATA USING SPATIAL INTERPOLATION METHODS IN AGRICULTURAL REGION

  • Ju-Young;Krishinamurshy Ganeshi
    • Water Engineering Research
    • /
    • v.5 no.3
    • /
    • pp.123-131
    • /
    • 2004
  • This paper describes the use of spatial interpolation for estimating seasonal crop potential evapotranspiration (PET) and irrigation water requirement in unmeasured evaporation gage stations within Edwards Aquifer, Texas using GIS. The Edwards Aquifer area has insufficient data with short observed records and rare gage stations, then, the investigation of data for determining of irrigation water requirement is difficult. This research shows that spatial interpolation techniques can be used for creating more accurate PET data in unmeasured region, because PET data are important parameter to estimate irrigation water requirement. Recently, many researchers are investigating intensively these techniques based upon mathematical and statistical theories. Especially, three techniques have well been used: Inverse Distance Weighting (IDW), spline, and kriging (simple, ordinary and universal). In conclusion, the result of this study (Table 1) shows the kriging interpolation technique is found to be the best method for prediction of unmeasured PET in Edwards aquifer, Texas.

  • PDF

The Application of Satellite Imagery in Droughts Analysis of Large Area (광역의 가뭄 분석을 위한 위성영상의 활용)

  • Jeong, Soo;Shin, Sha-Chul
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.14 no.2 s.36
    • /
    • pp.55-62
    • /
    • 2006
  • Droughts have been an important factor in disaster management in Korea because she has been grouped into nations of lack of water. Satellite imagery can be applied to droughts monitoring because it can provide periodic data for large area for long time. This study aims to present a process to analyze droughts in large area using satellite imagery. We estimated evapotranspiration in large area using NDVI data acquired from satellite imagery. For satellite imagery, we dealt with MODIS data operated by NASA. The evapotranspiration estimated from satellite imagery was combined with precipitation data and potential evapotranspiration data to estimate water balances. Using water balances we could analyze droughts effectively in our object area. As the result of this study, we could increase the usability of satellite imagery, especially in droughts analysis.

  • PDF

Altitudinal Pattern of Evapotranspiration and Water Need for Upland Crops in Jeju Island (제주도 지역의 고도에 따른 증발산량 및 용수량 특성 평가)

  • Kim, Chul Gyum;Kim, Nam Won
    • Journal of Korea Water Resources Association
    • /
    • v.48 no.11
    • /
    • pp.915-923
    • /
    • 2015
  • A method of estimating irrigation water need based on water balance and net water consumption concept is proposed, and applied to four watersheds in order to assess the regional and altitudinal characteristics of evapotranspiration and water need for upland crops in Jeju Island. Potential and actual evapotranspiration, and net water need were calculated during the period 1992 to 2013 using SWAT-K watershed model. The annual potential evapotranspiration decreased linearly with increasing elevation, while actual evapotranspiration showed increase with elevation to 400 m around and gradual decrease at higher elevation due to vegetation species, water availability, and cold limitation. Altitudinal pattern of net water need showed linear decrease with increasing elevation for three watersheds (Han-cheon, Cheonmi-cheon, and Oedo-cheon), and annual values of net water need for upland areas (below 200 m in elevation) were 559~680mm/yr. The comparison between actual pumping rate from wells and net water need for irrigation area showed that the amount of pumping water significantly increased during summer season (June to August), while net water need for crop cultivation relatively decreased during this period. To ensure these results, more water use data from pumping wells and additional watersheds should be investigated in the next study.

Development of the Model to Estimate Potential Evapotranspiration in Korea (우리나라의 잠재증발산량 변동양상 예측모형 개발)

  • Eom, Ki-Cheol;Jung, Pil-Kyun;Kim, Tae-Wan;Yoo, Sung-Yung;Park, So-Hyun
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.44 no.5
    • /
    • pp.674-678
    • /
    • 2011
  • The model to estimate potential evapotranspiration (PET) was developed using periodic function. Average PET during 30 years for 67 areas was $2.36mm\;day^{-1}$, and those were distributed with the range of $1.42{\sim}3.45mm\;day^{-1}$. The period of PET change was 16~32 years according to area.

Comparison of reference evapotranspiration estimation methods with limited data in South Korea

  • Jeon, Min-Gi;Nam, Won-Ho;Hong, Eun-Mi;Hwang, Seonah;Ok, Junghun;Cho, Heerae;Han, Kyung-Hwa;Jung, Kang-Ho;Zhang, Yong-Seon;Hong, Suk-Young
    • Korean Journal of Agricultural Science
    • /
    • v.46 no.1
    • /
    • pp.137-149
    • /
    • 2019
  • Accurate estimation of reference evapotranspiration (RET) is important to quantify crop evapotranspiration for sustainable water resource management in hydrological, agricultural, and environmental fields. It is estimated by different methods from direct measurements with lysimeters, or by many empirical equations suggested by numerous modeling using local climatic variables. The potential to use some such equations depends on the availability of the necessary meteorological parameters for calculating the RET in specific climatic conditions. The objective of this study was to determine the proper RET equations using limited climatic data and to analyze the temporal and spatial trends of the RET in South Korea. We evaluated the FAO-56 Penman-Monteith equation (FAO-56 PM) by comparing several simple RET equations and observed small fan evaporation. In this study, the modified Penman equation, Hargreaves equation, and FAO Penman-Monteith equation with missing solar radiation (PM-Rs) data were tested to estimate the RET. Nine weather stations were considered with limited climatic data across South Korea from 1973 - 2017, and the RET equations were calculated for each weather station as well as the analysis of the mean error (ME), mean absolute error (MAE), and root mean square error (RMSE). The FAO-56 PM recommended by the Food Agriculture Organization (FAO) showed good performance even though missing solar radiation, relative humidity, and wind speed data and could still be adapted to the limited data conditions. As a result, the RET was increased, and the evapotranspiration rate was increased more in coastal areas than inland.