• Title/Summary/Keyword: potential $CO_2$ reduction

Search Result 315, Processing Time 0.025 seconds

Estimation of Greenhouse Gas (GHG) Reductions from Bioenergy (Biogas, Biomass): A Case Study of South Korea (바이오에너지 (바이오가스, 바이오매스) 기술의 온실가스 감축산정: 국내를 대상으로)

  • Jung, Jaehyung;Kim, Kiman
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.33 no.4
    • /
    • pp.393-402
    • /
    • 2017
  • In this study, greenhouse gas (GHG) reductions from bioenergy (biogas, biomass) have been estimated in Korea, 2015. This study for construction of reduction inventories as direct and indirect reduction sources was derived from IPCC 2006 guidelines for national greenhouse gas inventories, guidelines for local government greenhouse inventories published in 2016, also purchased electricity and steam indirect emission factors obtained from KPX, GIR respectively. As a result, the annual GHG reductions were estimated as $1,860,000tonCO_{2eq}$ accounting for 76.8% of direct reduction (scope 1) and 23.2% of indirect reduction (scope 2). Estimation of individual greenhouse gases (GHGs) from biogas appeared that $CO_2$, $CH_4$, $N_2O$ were $90,000tonCO_2$ (5.5%), $55,000tonCH_4$ (94.5%), $0.3tonN_2O$ (0.004%), respectively. In addition, biomass was $250,000tonCO_2$ (107%), $-300tonCH_4$ (-3.2%), $-33tonN_2O$ (-3.9%). For understanding the values of estimation method levels, field data (this study) appeared to be approximately 85.47% compared to installed capacity. In details, biogas and biomass resulting from field data showed to be 76%, 74% compared to installed capacity, respectively. In the comparison of this study and CDM project with GHG reduction unit per year installed capacity, this study showed as 42% level versus CDM project. Scenario analysis of GHG reductions potential from bioenergy was analyzed that generation efficiency, availability and cumulative distribution were significantly effective on reducing GHG.

A Study on the Recovery of Zn from Electric Arc Furnace Dust by Carbon Reduction

  • Joo, Sung-Min;Kim, Hyung-Seok;Ahn, Ji-Whan;Kim, Hwan;Lee, Kyung-Hoon;Sung, Ghee-Woong;Kim, Jang-Su;Lee, Park-Seok
    • Proceedings of the IEEK Conference
    • /
    • 2001.10a
    • /
    • pp.398-403
    • /
    • 2001
  • There is a potential usability of electric arc furnace(EAF) dust produced during the iron manufacturing process as a recycled resource, because valuable materials such as Zn, Pb and Fe are contained in it. In this study, metallic Zn was recycled from the fine electric arc furnace dust by a solid state reduction method using carbon at relatively low temperature. It was possible to recover metallic zinc by using of high vapour pressure of zinc with this reduction method. The feasibility of recycled zinc for cold bonded pellet(CBP) was investigated. The main composition of EAF dust were franklinite(ZnFe$_2$O$_4$), magnetite(Fe$_3$O$_4$) and zincite(ZnO), and Pb and Cl were completely removed by a heat treatment in oxidation environment. The reduction ratio increased as the solid carbon content increased, and it increased with decreasing of dust particle size and increasing of compaction pressure due to a increase of contact area.

  • PDF

Study on the Optimization of Reduction Conditions for Samarium-Cobalt Nanofiber Preparation (사마륨-코발트 자성 섬유 제조를 위한 환원 거동 연구 및 환원-확산 공정의 최적화)

  • Lee, Jimin;Kim, Jongryoul;Choa, Yong-Ho
    • Journal of Powder Materials
    • /
    • v.26 no.4
    • /
    • pp.334-339
    • /
    • 2019
  • To meet the current demand in the fields of permanent magnets for achieving a high energy density, it is imperative to prepare nano-to-microscale rare-earth-based magnets with well-defined microstructures, controlled homogeneity, and magnetic characteristics via a bottom-up approach. Here, on the basis of a microstructural study and qualitative magnetic measurements, optimized reduction conditions for the preparation of nanostructured Sm-Co magnets are proposed, and the elucidation of the reduction-diffusion behavior in the binary phase system is clearly manifested. In addition, we have investigated the microstructural, crystallographic, and magnetic properties of the Sm-Co magnets prepared under different reduction conditions, that is, $H_2$ gas, calcium, and calcium hydride. This work provides a potential approach to prepare high-quality Sm-Co-based nanofibers, and moreover, it can be extended to the experimental design of other magnetic alloys.

Removal of EDCs from Industrial Sludge by Electron Beam

  • Han, Bumsoo;Kim, Jinkyu;Kim, Yuri;Jung, Seungtae;Park, Junhyung;Choi, Jangseung
    • Journal of Radiation Industry
    • /
    • v.8 no.2
    • /
    • pp.71-76
    • /
    • 2014
  • Endocrine disrupting chemicals (EDCs) and potential EDCs are mostly man-made, found in various materials such as pesticides, additives or contaminants in food, and personal care products. The high energy ionizing radiation has the ability to remove the EDCs with a very high degree of reliability and in a clean and efficient manner. The ionizing radiation interacts with EDCs both directly and indirectly. Direct interaction takes place with EDCs and the structure of EDCs is destroyed or changed. During indirect interaction, radiolysis products of water result in the formation of highly reactive intermediates which then react with the target molecules, culminating in structural changes. To confirm the radiation reduction of EDCs in industrial sludge, a pilot scale experiment up to 50 kGy of electron beam (EB) was conducted with samples from the textile dyeing industries. The experimental result showed the over 90% of reduction of Nonylphenol (NP) and Di(2-ethylhexyl) phthalate (DEHP) at around 10 kGy of absorbed doses.

Passive Film on Cobalt: A Three-Parameter Ellipsometry Study During the Film Formation

  • Woon-Kie Paik;Seunghyun Koh
    • Bulletin of the Korean Chemical Society
    • /
    • v.12 no.5
    • /
    • pp.540-544
    • /
    • 1991
  • Thin film being formed on the surface of cobalt in the early stage of electrochemically induced passivation was studied by the three-parameter ellipsometry. The growth of the passive film was complete in a few seconds from the onset of the passivating potential, and was followed by a slight decrease in the thickness in 4-40 seconds. The optical constants of the passive film changed gradually during the changes in the thickness. The thickness and the optical properties at the steady state of passivation depended on the potential of the electrode. From the coulometric data and the optical properties, the composition of the passive films was deduced to be close to those of CoO, ${Co_3}{O_4}$ and ${Co_2}{O_3}$ depending on the potential. Cathodic reduction in the presence of EDTA was found to be an efficient way to obtain film-free reference surface of cobalt.

Electrocatalytic Effect of Dioxygen Reduction at Glassy Carbon Electrode Modified with Schiff Base Co(II) Complexes (Schiff Base Co(II) 착물이 변성된 유리질 탄소전극에서 산소 환원의 전기촉매 효과)

  • Seong, Jeong-Sub;Chae, Hee-Nam;Choi, Yong-Kook
    • Analytical Science and Technology
    • /
    • v.11 no.6
    • /
    • pp.460-468
    • /
    • 1998
  • Schiff base ligands such as $SOPDH_2$, $SNDH_2$, $EBNH_2$, and $PBNH_2$ and their Co(II) complexes such as [$Co(II)(SND)(H_2O)_2$], [$Co(II)(SOPD)(H_2O)_2$], [$Co(II)(EBN)(H_2O)$], and [$Co(II)(PBN)(H_2O)$] have been synthesized. The mole ratio of Shiff base ligand to cobalt(II) for the Co(II) complexes was found to be 1:1. Also these complexes have been configurated with hexa-coordination. Reduction of dioxygen was investigated by cyclic voltammetry at glassy carbon electrodes modified with Schiff base Co(II) complexes in 1 M KOH aqueous solution. At modified glassy carbon electrode with Schiff base Co(II) complexes, reduction peak current of oxygen was increased and peak potential was shifted to more positive direction compared to bare glassy carbon electrode. The electrokinetic parameters such as number of electron and exchange rate constant were calculated from the results of cyclic voltammogrms. The reduction of dioxygen at glassy carbon electrode has been $2e^-$ reaction pathway. Exchange rate constant at glassy carbon electrode modified with Co(II) complexes was increased 2~10 times compared to bare electrode.

  • PDF

Estimation of Greenhouse Gas Reduction Potential by Treatment Methods of Excavated Wastes from a Closed Landfill Site (사용종료매립지(使用終了埋立地) 폐기물(廢棄物)의 처리방법별(處理方法別) 온실(溫室)가스 저감량(低減量) 평가(評價))

  • Lee, Byung-Sun;Han, Sang-Kuk;Kang, Jeong-Hee;Lee, Nam-Hoon
    • Resources Recycling
    • /
    • v.22 no.6
    • /
    • pp.3-11
    • /
    • 2013
  • This study was carried out to estimate greenhouse gas reduction potentials under treatment methods of combustible wastes excavated from closed landfill. The treatment methods of solid wastes were landfilling, incineration, and production of solid recovery fuel. The greenhouse gas reduction potentials were calculated using the default emission factor presented by IPCC G/L method of IPCC (Intergovernmental Panel on Climate Change). The composition of excavated waste represented that screened soil was the highest (65.96%), followed by vinyl/plastic (19.18%). This means its own component is similar to the other excavated waste from unsanitary landfill sites. Additionally, its bulk density was 0.74 $t/m^3$. In case of landfilling of excavated waste, greenhouse gas emission quantity was 60,542 $tCO_2$. In case of incineration of excavated waste, greenhouse gas emission quantity was 9,933 $tCO_2$. However, solid recovery fuel from excavated waste reduced 33,738 $tCO_2$ of the greenhouse gas emission quantity. Therefore, solid recovery fuel production is helpful to reduce of greenhouse gas emission.

A Study on the Greenhouse Gas Emission and Reduction Measures of Domestic Magnesium Production Process (국내 마그네슘 생산공정의 온실가스 배출량 산정 및 감축방안 연구)

  • Kim, Kyung-Nam;Im, Jin-Ah;Yoo, Kyung-Seun
    • Journal of Climate Change Research
    • /
    • v.5 no.3
    • /
    • pp.219-230
    • /
    • 2014
  • In this study, greenhouse gas emission of magnesium industry was estimated and the reduction potential of the greenhouse gas emission was evaluated with reduction technologies. Default value of IPCC guideline was used to calculate the greenhouse gas emission and $SF_6$ alternatives were considered in reduction potential. Import of magnesium ingot was 22,806 ton in 2013, which will be expected to increase to 81,700 ton with 20% rate in 2020. Magnesium ingot was consumed to produce magnesium alloy in diecasting process. Recently, commercial production of crown magnesium and magensium plate began. Based on ingot consumption, $CO_2$ emission of domestic magnesium industry was estimated to 504,000 ton, which is about 0.79% of domestic industrial emissions. Reduction potential of diecasting process was estimated to 489,320 ton by changing SF6 to alternative gases such as HFC-134a, Novec-612. Emission factor of Tier 3 level should be developed to enhance the accuracy of greeenhouse gas emission of magnesium industry.

A Study on Calcium Ion Reduction in Power Plant Water using High Voltage Impulse (고전압 임펄스를 활용한 발전용수 칼슘농도 저감에 관한 연구)

  • Kim, TaeHui;Chang, In-Soung;Jung, Jae-Hwan;Hong, Woong ki;Lee, June-Ho
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.66 no.3
    • /
    • pp.545-550
    • /
    • 2017
  • As an alternate technique for water softening, high voltage impulse (HVI) is introduced and verified if it can control the $CaCO_3$ scale formation in industrial water treatment. After HVI was applied to the artificial hard water containing $100{\pm}5mg/L$ $Ca^{2+}$ for 4 hours, the $Ca^{2+}$ concentration and the electrical conductivity were measured. The concentration of $Ca^{2+}$ was reduced from 94.5 to 86.3 mg/L (8.7% reduction) after 4 hour contact of HVI under 5 kV condition. The $Ca^{2+}$ was decreased from 92 to 77.7 mg/L (15.6% reduction) at 8kV and from 90.1 to 75.4 mg/L (16.3% reduction) at 12 kV condition. Both of the contact time and the applied voltage were important parameters affecting the calcium ion reduction. With these results, it was verified that HVI technique could be potential candidate for control of $CaCO_3$ scale formation.

Analysis of Greenhouse Gas Reduction Potentials in a University using Bottom-up Model (상향식 모형을 이용한 대학의 온실가스 감축 잠재량 평가)

  • Yoo, Jung-Hwa;Park, Nyun-Bae;Jo, Mi-hyun;Jeon, Eui-Chan
    • Journal of Climate Change Research
    • /
    • v.3 no.3
    • /
    • pp.183-193
    • /
    • 2012
  • In this study, the S University's energy usage, greenhouse gas emissions situation and potential reduction amount were analyzed using a long-term energy analysis model, LEAP. In accordance with the VISION 2020 and university's own improvement plans, S University plans to complete a second campus through expansion constructions by 2020 and by allocating the needed land. Accordingly, increases in energy usage and greenhouse gas emissions seem inevitable. Hence, in this study, the calculations of potential reduction amount by 2020 were attempted through the use of LEAP model by categorizing the energy used based on usage types and by proposing usage typebased reduction methods. There were a total of 4 scenarios: a standard scenario that predicted the energy usage without any additional energy reduction activity; energy reduction scenario using LED light replacement; energy reduction scenario using high efficiency building equipment; and a scenario that combines these two energy reduction scenarios. As scenario-based results, it was ascertained that, through the scenario that had two other energy reduction scenarios combined, the 2020 greenhouse gas emissions amount would be 14,916 tons of $CO_2eq$, an increase of 43.7% compared to the 2010 greenhouse gas emissions amount. Put differently, it was possible to derive a result of about 23.7% reduction of the greenhouse gas emissions amount for S University's greenhouse gas emissions amount through energy reduction activities. In terms of energy reduction methods, changing into ultra-high efficiency building equipment would deliver the most amount of reduction.