• Title/Summary/Keyword: potassium channel

Search Result 220, Processing Time 0.028 seconds

Block of HERG Channels Expressed in Xenopus oocytes by External$Ca^{2+}$

  • Kim, Injune;Ho, Won-Kyung;Chung, Yu-Jeong;Earm, Yung-E;Lee, Chin-Ok
    • Proceedings of the Korean Biophysical Society Conference
    • /
    • 1997.07a
    • /
    • pp.31-31
    • /
    • 1997
  • Rapidly activating delayed K current (IKr) in cardiac muscles plays an important in repolarization. Expression of HERG cloned by the study on inherited LQT revealed that it encodes a potassium channel with biophysical properties similar to those of IKr in cardiac myocytes: outward currents activating on depolarization with large tail currents on repolarization, implying the inward rectifying property.(omitted)

  • PDF

Effect of Calcium Entry Blockers on the Calcium Transport in the Isolated Sarcolemmal membrane from the Porcine Small Intestine (돼지 소장 평활근 세포막에서의 Calcium 이동에 미치는 Calcium entry blockers 의 영향)

  • Seok, Jeong-Ho;Lim, Jong-Ho;Lee, Jae-Heun
    • The Korean Journal of Pharmacology
    • /
    • v.22 no.2
    • /
    • pp.151-156
    • /
    • 1986
  • There are some evidence for the presence of more than one type of calcium channels. To investigate whether organic calcium antagonist sensitive calcium channels exist in the isolated sarcolemmal membrane, we prepared high KCl-loaded sarcolemmal vesicle from the procine small instine, and induced calcium transport by high $K^+$ concentration or by electrical stimulation after preincubation of KCl-loaded vesicle in the low potassium solution. Calcium transport induced by high $K^+$ concentration (84.7mM) was significantly increased (p<0.05), compared with that by low $K^+$ concentration (2.08 mM), and not inhibited by diltiazem $(10^{-6}\;M)$. Calcium transport was inactivated with time. By continuous electrical stimulation (3V, 15Hz, 25m see), calcium transport was markedly increased, and inhibited significantly by dilltiazem $(10^{-6}\;M)$ and nifedipine $(10^{-6}\;M)$ (p<0.005), compared with the value of control without electrical stimulation. Calcium transport by electrical stimulation was not inactivated with time for at least 2 min. From these results, it was concluded that there was organic calcium antagonist sensitive channel in the isolated intestinal sarcolemma membrane, which was activated by electrical stimulation.

  • PDF

Effect of Amino Terminus of Gap Junction Hemichannel on Its Channel Gating (간극결합채널의 아미노말단이 채널개폐에 미치는 영향)

  • Yim Jaegil;Cheon Misaek;Jung Jin;Oh Seunghoon
    • Journal of Life Science
    • /
    • v.16 no.1
    • /
    • pp.37-43
    • /
    • 2006
  • Gap junction is an ion channel forming between adjacent cells. It also acts as a membrane channel like sodium or potassium channels in a single cell. The amino acid residues up to the $10^{th}$ position in the amino (N)-terminus of gap junction hemichannel affect gating polarity as well as current-voltage (I-V) relation. While wild-type Cx32 channel shows negative gating polarity and inwardly rectifying I-V relation, T8D channel in which threonine residue at $8^{th}$ position is replaced with negatively charged aspartate residue shows reverse gating polarity and linear I-V relation. It is still unclear whether these changes are resulted from the charge effect or the conformational change of the N-terminus. To clarify this issue, we made a mutant channel harboring cysteine residue at the $8^{th}$ position (T8C) and characterized its biophysical properties using substituted-cysteine accessibility method (SCAM). T8C channel shows negative gating polarity and inwardly rectifying I-V relation as wild-type channel does. This result indicates that the substitution of cysteine residue dose not perturb the original conformation of wild-type channel. To elucidate the charge effect two types of methaenthiosulfonate (MTS) reagents (negatively charged $MTSES^-$ and positively charged $MTSET^+$) were used. When $MTSES^-$ was applied, T8C channel behaved as T8D channel, showing positive gating polarity and linear I-V relation. This result indicates that the addition of a negative charge changes the biophysical properties of T8C channel. However, positively charged $MTSET^+$ maintained the main features of T8C channel as expected. It is likely that the addition of a charge by small MTS reagents does not distort the conformation of the N-terminus. Therefore, the opposite effects of $MTSES^-$ and $MTSETT^+$ on T8C channel suggest that the addition of a charge itself rather than the conformational change of the N-terminus changes gating polarity and I-V relation. Furthermore, the accessibility of MTS reagents to amino acid residues at the $8^{th}$ position supports the idea that the N-terminus of gap junction channel forms or lies in the aqueous pore.

The Effects of Notopterygii Rhizoma on the Carotid Arterial Tension in Rabbit (강활(羌活)이 가토(家兎) 혈관평골근(家兎 血管平滑筋)의 긴장성(緊張性) 조절(調節)에 미치는 영향(影響))

  • Chang Gyu-Tae;Kim Jang-Hyun
    • The Journal of Pediatrics of Korean Medicine
    • /
    • v.12 no.1
    • /
    • pp.163-181
    • /
    • 1998
  • The purpose of this study was to analyze the Rhizoma on the blood pressure, heart rate and to define the mechanism of Notopterygii Rhizoma-induced relaxation in rabbit common carotid arterial contracted by agonists. Method : In order to explore the effect of Notopterygii Rhizoma on the blood pressure and heart rate, Notopterygii Rhizoma extract was injected in vein of rabbit ear. In order to investigate the effect of Notopterygii Rhizoma on norepinephrine(NE)-induced contracted rabbit carotid arterial strips, transverse strips with intact or damaged endothelium were used for the experiment using organ bath. To analyze the mechanism of Notopterygii Rhizoma-induced relaxation, Notopterygii Rhizoma extract infused into NE-induced contracted strips induced by agonists after treatment of methylene blue, propranolol, ouabain and it infused into serotonin, potassium chloride-induced contracted strips. Result : The blood pressure was significantly decreased by Notopterygii Rhizoma, but heart rate was insignificantly. In addition, Notopterygii Rhizoma significantly relaxed the norepinephrine, serotonin, potassium-induced contracted strips with intact endothelium or damaged endothelium. The relaxing effect of Notopterygii Rhizoma In NE-induced contracted strips with damaged endothelium by pretreatment of methylene blue, propranolol was not changed, but Ouabain was significantly decreased. Conclusion : These results were shown that Notopterygii Rhizoma affected the NE -induced contracted smooth muscle without the participation of endothelium, and demonstrated that the mechanism of NotoDtervgii Rhizoma-induced relaxation was the obstruction of receptor-operated Ca2+ channel.

  • PDF

Antifungal Mechanism of Antifungal Peptide Derived from Cecropin A(1-8)- Melittin(1-12) Hybrid against Aspergillus fumigatus

  • Lee, Dong-Gun;Jin, Zhe-Zhu;Maeng, Cheol-Young;Shin, Song-Yub;Seo, Moo-Yeol;Kim, Kil-Lyong;Hahm, Kyung-Soo
    • Journal of Microbiology and Biotechnology
    • /
    • v.9 no.2
    • /
    • pp.168-172
    • /
    • 1999
  • The antifungal mechanism of the antifungal peptide against Aspergillus fumigatus, $K^{18,19}$-CA(l-8)-ME(l-12), derived from cecropin A(l-8)-melittin(l-12) was investigated by confocal laser scanning microscopy, cell wall regeneration, ATPase activity inhibition, and released potassium ion. By confocal laser scanning microscopy, $K^{18,19}$-CA(l-8)-ME(l-12) was detected on the surface of A. fumigatus, while cecropin A used as a negative control peptide was not detected. The protoplast of A. fumigatus treated with$K^{18,19}$-CA(1-8)-ME(1-12) failed to regenerate the fungal cell walls. Compared with cecropin A, the amount of potassium ion released by $K^{18,19}$-CA(l-8)-ME(l-12) was increased. Furthermore, $K^{18,19}$-CA(l-8)-ME(l-12) inhibited the ATPase activity on the plasma membrane. These results suggested that $K^{18,19}$-CA(l-8)-ME(1-12) acts on the plasma membrane of A. fumigatus and its antifungal action is due to the ion channel or pore formation on the plasma membrane.

  • PDF

Expression of Ion Channels in Perivascular Stem Cells derived from Human Umbilical Cords

  • Kim, Eunbi;Park, Won Sun;Hong, Seok-Ho
    • Development and Reproduction
    • /
    • v.21 no.1
    • /
    • pp.11-18
    • /
    • 2017
  • Potassium channels, the largest group of pore proteins, selectively regulate the flow of potassium ($K^+$) ions across cell membranes. The activity and expression of $K^+$ channels are critical for the maintenance of normal functions in vessels and neurons, and for the regulation of cell differentiation and maturation. However, their role and expression in stem cells have been poorly understood. In this study, we isolated perivascular stem cells (PVCs) from human umbilical cords and investigated the expression patterns of big-conductance $Ca^{2+}$-activated $K^+$ ($BK_{Ca}$) and voltage-dependent $K^+$ ($K_v$) channels using the reverse transcription polymerase chain reaction. We also examined the effect of high glucose (HG, 25 mM) on expression levels of $BK_{Ca}$ and $K_v$ channels in PVCs. $K_{Ca}1.1$, $K_{Ca}{\beta}_3$, $K_v1.3$, $K_v3.2$, and $K_v6.1$ were detected in undifferentiated PVCs. In addition, HG treatment increased the amounts of $BK_{Ca}{\beta}_{3a}$, $BK_{Ca}{\beta}_4$, $K_v1.3$, $K_v1.6$, and $K_v6.1$ transcripts. These results suggested that ion channels may have important functions in the growth and differentiation of PVCs, which could be influenced by HG exposure.

Antiarrhythmic Effect of Artemisinin in an Ex-vivo Model of Brugada Syndrome Induced by NS5806

  • Hyung Ki Jeong;Seo Na Hong;Namsik Yoon;Ki Hong Lee;Hyung Wook Park;Jeong Gwan Cho
    • Korean Circulation Journal
    • /
    • v.53 no.4
    • /
    • pp.239-250
    • /
    • 2023
  • Background and Objectives: Brugada syndrome (BrS) is an inherited arrhythmia syndrome that presents as sudden cardiac death (SCD) without structural heart disease. One of the mechanisms of SCD has been suggested to be related to the uneven dispersion of transient outward potassium current (Ito) channels between the epicardium and endocardium, thus inducing ventricular tachyarrhythmia. Artemisinin is widely used as an antimalarial drug. Its antiarrhythmic effect, which includes suppression of Ito channels, has been previously reported. We investigated the effect of artemisinin on the suppression of electrocardiographic manifestations in a canine experimental model of BrS. Methods: Transmural pseudo-electrocardiograms and epicardial/endocardial transmembrane action potentials (APs) were recorded from coronary-perfused canine right ventricular wedge preparations (n=8). To mimic the BrS phenotypes, acetylcholine (3 μM), calcium channel blocker verapamil (1 μM), and Ito agonist NS5806 (6-10 μM) were used. Artemisinin (100-150 μM) was then perfused to ameliorate the ventricular tachyarrhythmia in the BrS models. Results: The provocation agents induced prominent J waves in all the models on the pseudo-electrocardiograms. The epicardial AP dome was attenuated. Ventricular tachyarrhythmia was induced in six out of 8 preparations. Artemisinin suppressed ventricular tachyarrhythmia in all 6 of these preparations and recovered the AP dome of the right ventricular epicardium in all preparations (n=8). J wave areas and epicardial notch indexes were also significantly decreased after artemisinin perfusion. Conclusions: Our findings suggest that artemisinin has an antiarrhythmic effect on wedge preparation models of BrS. It might work by inhibition of potassium channels including Ito channels, subsequently suppressing ventricular tachycardia/ventricular fibrillation.

Effects of Potassium-Channel Opener on Thallium-201 Kinetics: In-vitro Study in Rat Myocyte Preparations and In-vivo Mice Biodistribution Study (K-통로개방제가 배양심근세포와 생쥐 체내의 Thallium-201역동학에 미치는 영향)

  • Lee, Jae-Tae;Kim, Eun-Ji;Ahn, Byeong-Cheol;Sohn, Kang-Kyun;Lee, Kyu-Bo;Ha, Jeoung-Hee;Kim, Chun-K.
    • The Korean Journal of Nuclear Medicine
    • /
    • v.30 no.4
    • /
    • pp.507-515
    • /
    • 1996
  • Background : Potassium channel opener (K-opener) opens ATP-sensitive K'-channel located at cell membrane and induces potassium efflux from cytosol, resulting in intracellular hyperpolarization. Newly synthesized K-opener is currently examined for pharmacologic potency by means of rubidium release test from smooth muscle strip pre-incubated with Rb-86. Since in-vivo behavior of thallium is similar to that of rubidium, we hypothesized that K-opener can alter T1-201 kinetics in vivo. Purpose : This study was prepared to investigate the effects of pinacidil (one of potent K-openers) on the T1-201 uptake and clearance in cultured myocyte, and in-vivo biodistribution in mice. Methods : Spontaneous contracting myocytes were prepared to imitate in-vivo condition from 20 hearts of 3-5 days old Sprague-Dawley rat and cultured for 3-5 days before use ($5{\times}10^5$ cells/ml). Pinacidil was dissolved in 10% DMSO solution at a final concentration of 100nM or l0uM and was co-incubated with T1-201 in HBSS buffer for 20-min to evaluate its effect on cellular T1-uptake, or challenged to cell preparation pre-incubated with T1-201 for washout study. Two, 40 or $100{\mu}g$ of pinacidil was injected intravenously into ICR mice at 10 min after $5{\mu}Ci$ T1-201 injection, and organ uptake and whole body retention rate were measured at different time points. Results : Co-incubation of pinacidil with T1-201 resulted in a decrease in T1-201 uptake into cultured myocyte by 1.6 to 2.5 times, depending on pinacidil concentration and activity of T1-201 used. Pinacidil enhanced T1-201 washout by 1.6-3.1 times from myocyte preparations pre-incubated with T1-201. Pinacidil treatment appears to be resulted in mild decreases in blood and liver activity in normal mice, in contrast, renal and cardiac uptake were mildly decreased in a dose dependent manner. Whole body retention ratios of T1-201 were lower at 24 hour after injection with $100{\mu}g$ of pinacidil than control. Conclusion : These results suggest that treatment with K-opener may affect the interpretation of T1-201 myocardial images, due to decreasing thallium accumulation and enhancing washout from myocardium.

  • PDF

Expression Pattern of Kir6.2 in Skeletal Muscle Cells of Patients with Familial Hypokalemic Periodic Paralysis (가족성 저칼륨성 주기성마비 환자의 골격근 세포내 Kir6.2의 발현 및 분포 양상)

  • Kim, Sung-Jo;Yoon, Dong-Ho;Kim, June-Bum
    • Journal of Life Science
    • /
    • v.20 no.3
    • /
    • pp.457-461
    • /
    • 2010
  • Familial hypokalemic periodic paralysis (HOKPP) is an autosomal dominant disorder characterized by reversible flaccid paralysis and intermittent hypokalemia. Although it has been reported that decreased activity in the $K_{ATP}$ channels of the skeletal muscle cell membrane plays a role in the pathogenesis of HOKPP, a clear mechanism has not yet been established. This study aimed to investigate the molecular biological mechanism underlying the decreased activity of $K_{ATP}$ channels in the skeletal muscles of familial HOKPP patients by studying the levels of the $K_{ATP}$ channel subunit Kir6.2. We found that when cells obtained from healthy individuals (normal cells) and HOKPP patients (patient cells) were treated with 4 mM potassium buffer, there was no quantitative change in the KCNJ11 mRNA levels and no difference in the Kir6.2 protein expression in the cytosol and cell membrane. On the other hand, when 1 mM potassium buffer was used, normal cells showed decreased expression of KCNJ11 mRNA as well as decreased expression of Kir6.2 protein in the cell membrane. However, patient cells treated with the same buffer showed no quantitative change in the levels of KCNJ11 mRNA or in the levels of Kir6.2 protein in the cytosol and cell membrane. Thus, in HOKPP patients, the Kir6.2 protein cannot be transported from the cell membrane to the cytosol, leading to closure of the $K_{ATP}$ channels, induction of depolarization, and subsequently, to the paralytic symptoms observed in the patient. Our findings thus provide new insights into the pathogenesis of HOKPP.

Bupivacaine-induced Vasodilation Is Mediated by Decreased Calcium Sensitization in Isolated Endothelium-denuded Rat Aortas Precontracted with Phenylephrine

  • Ok, Seong Ho;Bae, Sung Il;Kwon, Seong Chun;Park, Jung Chul;Kim, Woo Chan;Park, Kyeong Eon;Shin, Il Woo;Lee, Heon Keun;Chung, Young Kyun;Choi, Mun Jeoung;Sohn, Ju Tae
    • The Korean Journal of Pain
    • /
    • v.27 no.3
    • /
    • pp.229-238
    • /
    • 2014
  • Background: A toxic dose of bupivacaine produces vasodilation in isolated aortas. The goal of this in vitro study was to investigate the cellular mechanism associated with bupivacaine-induced vasodilation in isolated endothelium-denuded rat aortas precontracted with phenylephrine. Methods: Isolated endothelium-denuded rat aortas were suspended for isometric tension recordings. The effects of nifedipine, verapamil, iberiotoxin, 4-aminopyridine, barium chloride, and glibenclamide on bupivacaine concentration-response curves were assessed in endothelium-denuded aortas precontracted with phenylephrine. The effect of phenylephrine and KCl used for precontraction on bupivacaine-induced concentration-response curves was assessed. The effects of verapamil on phenylephrine concentration-response curves were assessed. The effects of bupivacaine on the intracellular calcium concentration ($[Ca^{2+}]_i$) and tension in aortas precontracted with phenylephrine were measured simultaneously with the acetoxymethyl ester of a fura-2-loaded aortic strip. Results: Pretreatment with potassium channel inhibitors had no effect on bupivacaine-induced relaxation in the endothelium-denuded aortas precontracted with phenylephrine, whereas verapamil or nifedipine attenuated bupivacaine-induced relaxation. The magnitude of the bupivacaine-induced relaxation was enhanced in the 100mM KCl-induced precontracted aortas compared with the phenylephrine-induced precontracted aortas. Verapamil attenuated the phenylephrine-induced contraction. The magnitude of the bupivacaine-induced relaxation was higher than that of the bupivacaine-induced $[Ca^{2+}]_i$ decrease in the aortas precontracted with phenylephrine. Conclusions: Taken together, these results suggest that toxic-dose bupivacaine-induced vasodilation appears to be mediated by decreased calcium sensitization in endothelium-denuded aortas precontracted with phenylephrine. In addition, potassium channel inhibitors had no effect on bupivacaine-induced relaxation. Toxic-dose bupivacaine-induced vasodilation may be partially associated with the inhibitory effect of voltage-operated calcium channels.