• Title/Summary/Keyword: postural balance

Search Result 443, Processing Time 0.024 seconds

Effect of Flexi-bar exercise on postural alignment and balance ability in juvenile soccer players (플렉시-바 운동이 유소년 축구선수의 자세정렬과 균형에 미치는 효과)

  • Um, Ki-Mai;Wang, Joong-San
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.16 no.8
    • /
    • pp.5296-5303
    • /
    • 2015
  • This study aimed to analyze the effect of flexi-bar exercise on changes in postural alignment and balance of juvenile soccer players. The subjects were juveniles soccer players divided into exercise and control groups of 10 players each. The exercise group performed a flexi-bar exercise for 30 minutes a day three times weekly for eight weeks, and the differences in postural alignment and balance before and after the experiment and between study groups were analyzed. The measurements before the subjects exercised revealed overall asymmetric postural alignments and balance toward the right and rear sides. The study results showed that the exercise group had a statistically significant improvement in the height and angle of both shoulder, scapula, pelvis and hands(p<.05) after performing the exercise. Changes in balance showed that the exercise group had statistically significant reduction in changes in curve length(p<.05). The study verified that flexi-bar exercise can be effective for improving the postural alignment and balance of juvenile soccer players.

Immediate effects of a neurodynamic sciatic nerve sliding technique on hamstring flexibility and postural balance in healthy adults

  • Park, Jaemyoung;Cha, Jaeyun;Kim, Hyunjin;Asakawa, Yasuyoshi
    • Physical Therapy Rehabilitation Science
    • /
    • v.3 no.1
    • /
    • pp.38-42
    • /
    • 2014
  • Objective: In this study, we applied a neurodynamic sciatic nerve sliding technique to healthy adults to elucidate its effects on hamstring flexibility and postural balance. Design: Cross-sectional study. Methods: This study targeted twenty four healthy adults (16 men, 8 women). A neurodynamic sciatic nerve sliding technique was applied 5 times to all subjects' dominant leg. The subjects were asked to sit on the bed while performing cervical and thoracic flexion, as well as knee flexion with ankle plantar flexion. Then, they were asked to perform cervical and thoracic extension and knee extension with their ankle in dorsiflexion and maintain the position for 60 s. For postural balance, we measured postural sway while the subjects maintained a one-legged standing posture using the Good Balance System and measured the hip joint flexion range of motion using a standardized passive straight leg raise (SLR) test. Results: SLR test increased significantly from $79^{\circ}$ before the intervention to $91.67^{\circ}$ after the intervention (p<0.05). Regarding the participants' balance evaluated using the one-legged standing test, the X-speed decreased significantly from 18.61 mm/s to 17.17 mm/s (p<0.05), the Y-speed decreased from 22.28 mm/s to 20.52 mm/s (p<0.05), and the velocity moment was significantly decreased from $89.33mm^2/s$ to $74.99mm^2/s$ after the intervention (p<0.05). Conclusions: Application of the neurodynamic sciatic nerve sliding technique exhibited improved hamstring flexibility and postural balance of healthy adults.

Performance Evaluation and Development of Virtual Reality Bike Simulator (가상현실 바이크 시뮬레이터의 개발과 성능평가)

  • Kim, Jong-Yun;Song, Chul-Gyu;Kim, Nam-Gyun
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.51 no.3
    • /
    • pp.112-121
    • /
    • 2002
  • This paper describes a new bike system for the postural balance rehabilitation training. Virtual environment and three dimensional graphic model is designed with CAD tools such as 3D Studio Max and World Up. For the real time bike simulation, the optimized WorldToolKit graphic library is embedded with the dynamic geometry generation method, multi-thread method, and portal generation method. In this experiment, 20 normal adults were tested to investigate the influencing factors of balancing posture. We evaluated the system by measuring the parameters such as path deviation, driving velocity, COP(center for pressure), and average weight shift. Also, we investigated the usefulness of visual feedback information by weight shift. The results showed that continuous visual feedback by weight shift was more effective than no visual feedback in the postural balance control It is concluded this system might be applied to clinical use as a new postural balance training system.

Age-related Differences in Ankle-joint Proprioception and Postural Balance in Women: Proprioception of Force Versus Position

  • Kim, Seo-hyun;Yi, Chung-hwi;Lim, Jin-seok;Lim, One-bin
    • Physical Therapy Korea
    • /
    • v.29 no.2
    • /
    • pp.124-130
    • /
    • 2022
  • Background: During postural control, older adults are more dependent on proprioception than are young adults. Ankle proprioception, which plays an important role in maintaining postural balance, decreases with age. Published studies are insufficient to establish a significant age difference in postural sway resulting from the known age-related decrease in ankle proprioception and do not examine various detailed test conditions. Objects: The present study aimed to compare ankle proprioception between older and younger groups along dimensions of position vs. force proprioception and dorsiflexion vs. plantarflexion. The present study also aimed to compare postural sway between young and older women during quiet standing under two sensory conditions. Methods: We recruited seven young women aged 21-24 and seven older women aged 60-63. Ankle proprioception was assessed as the accuracy of the joint position sense (JPS) and the force sense (FS). Postural sway was assessed using center-of-pressure measurements recorded during quiet standing under two sensory positions: eyes open and eyes closed with head tilted back. Results: Older women had lower JPS in dorsiflexion and lower FS in plantarflexion than did younger women. We found no significant age differences in JPS in plantarflexion or in FS in dorsiflexion. We observed a main effect of group on postural sway in two sway parameters out of three. We observed significant differences in JPS with dorsiflexion, and in FS with plantarflexion. Conclusion: Proprioception for ankle plantar flexor decreased more significantly with aging than did that for ankle dorsiflexor, accounting for the impaired postural balance observed in older women.

Effects of Treadmill Gait Training According to Different Inclination on Postural Balance in Patients with Chronic Stroke

  • Choi, Myeong Su;Lee, Jong Su;Kim, Kyoung;Kim, Young Mi
    • The Journal of Korean Physical Therapy
    • /
    • v.30 no.6
    • /
    • pp.205-210
    • /
    • 2018
  • Purpose: This study was to examine the effects of treadmill gait training at different controlled inclinations on the standing balance of hemiplegic patients caused by cerebrovascular injury. Methods: The study's subjects were 44 patients with chronic stroke, randomly divided into three experimental groups: $0^{\circ}$ treadmill gait training (n=14), $5^{\circ}$ treadmill gait training (n=15), and $10^{\circ}$ treadmill gait training (n=15). In addition to conventional physical therapy, the subjects underwent gait training on a treadmill with one of three different inclinations for 30 min per session five times per week for six weeks. The Biodex balance system SD, Berg balance scale, and timed up and go tests were used to measure the postural balance of the patients. Results: This study showed that gait training on a treadmill at controlled inclinations of $0^{\circ}$, $5^{\circ}$, and $10^{\circ}$ positively influenced the stroke patients' standing balance. The $5^{\circ}$ and $10^{\circ}$ inclination gait training groups showed significantly more improvement than the $0^{\circ}$ inclination group. Conclusion: Gait training on a treadmill with inclinations of $0^{\circ}$, $5^{\circ}$, or $10^{\circ}$ can be said to positively affect the postural balance of hemiplegic patients due to stroke. In particular, $5^{\circ}$ and $10^{\circ}$ inclination gait training offered more significant improvement than the $0^{\circ}$ inclination gait training group. When added to regular treatment routines, gait training at controlled inclinations is an effective intervention for improving hemiplegia due to postural balance.

Effects of Knee Malalignment on Static and Dynamic Postural Stability

  • Chae, Yun-Won;Park, Ji-Won;Park, Seol
    • The Journal of Korean Physical Therapy
    • /
    • v.27 no.1
    • /
    • pp.7-11
    • /
    • 2015
  • Purpose: This study was conducted in order to determine the effects of knee malalignment including genu varum, valgum, and recurvatum on static and dynamic postural stability. Methods: A total of 80 subjects were enrolled in this study. Subjects who showed over 3 cm in the distance between the knees were classified as the genu varum group, and subjects who showed over 3 cm in the distance between the ankles were classified as the genu valgum group. Subjects who showed over 1 cm in the distance between the patella and a table in prone position were classified as the genu recurvatum group. Static and dynamic stability were measured as overall, anterioposterior, and mediolateral balance index using a Biodex Balance System. Results: This study showed that knee alignment affected static and dynamic postural stability. In particular, there were significant differences in the mediolateral stability index among genu varum, valgum group, and the other groups, but no differences in overall and anteriolateral stability index. Significant differences in the anterioposterior stability index were observed between genu recurvatum and the other groups, however, there were no differences in overall and mediolateral stability index. Conclusion: The findings were that knee malalignment affects postural stability toward a specific direction. Treatment to improve postural stability for treatment of knee malalignment or to prevent falling or injuries is needed and postural stability toward a specific direction according to the knee alignment conditions should be considered.

Effects of Visual Feedback-Based Balance Training on Balance in Elderly Fallers (시각되먹임 균형훈련이 낙상을 경험한 노인의 균형에 미치는 효과)

  • Lee, Sun-Woo;Lee, Kyoung-Jin;Song, Chang-Ho
    • Journal of muscle and joint health
    • /
    • v.18 no.1
    • /
    • pp.16-27
    • /
    • 2011
  • Purpose: The purpose of this study was to investigate the effects of a visual feedbackbased balance training, using force platform biofeedback, on the postural balance of elderly faller. Methods: Fifty one community-dwelling older adults (aged 66-88 years) with a recent history of fall participated in the study. Participants were randomized to an experimental group (EG, n=25) and to a control group (CG, n=26). The EG participated in training sessions three times/week for 6 weeks. Visual feedbackbased balance training with the a computerized force platform with visual feedback screen was used in the experimental group. Static balance (center of gravity) and dynamic balance (Functional reach test, Timed "Up & Go" test, Berg balance scale) were assessed before and after end of training. Results: A significant improvement in static balance and dynamic balance were demonstrated within the EG (p<.05), but not in the CG. Conclusion: Visual feedback-based balance training may be an effective intervention to improve postural balance of elderly fallers.

Effect of Flexi-bar Exercise on Postural Alignment and Balance in Asymmetric Posture

  • Um, Ki Mai;Kim, Hyun Sook;Lim, In Hyuk
    • Journal of International Academy of Physical Therapy Research
    • /
    • v.6 no.1
    • /
    • pp.809-814
    • /
    • 2015
  • This study was conducted to identify how a flexi-bar exercise influences body alignment and balance in adults who have asymmetry in their right or left body. In total, 20 participants were separated into the experimental group and the comparison group. Those in the experimental group participated in a flexi-bar exercise for 6 weeks and based on the coronal plane before and after exercise, their body alignment and balance were measured behind the body. The result was those who had participated in a flexi-bar exercise significantly improved their angle of acromion on both sides, the difference in the angle and height of the posterior superior iliac spine on both sides(p<.05), and the balance of the center sagittal plane(p<.05). Through this study, it could be said that participating in a flexi-bar exercise would improve postural alignment and balance of the shoulder and pelvis in adults with asymmetric posture.

The Effect of Mechanical Horseback-Riding Training Velocity on Vestibular Functions and Static Postural Balance in Healthy Adults (승마기구의 훈련속도가 정상성인의 안뜰기능과 정적자세 균형에 미치는 영향)

  • Lim, Jae-Heon;Park, Jang-Sung;Cho, Woon-Su
    • The Journal of Korean Physical Therapy
    • /
    • v.25 no.5
    • /
    • pp.288-296
    • /
    • 2013
  • Purpose: This study was conducted in order to determine whether mechanical horseback-riding training depending on velocity can improve vestibular function and static postural balance on standing in healthy adults. Methods: For evaluation of vestibular function, electrooculography (EOG) of vertical and horizontal was performed for identification of the motion of eyes. For evaluation of static postural balance, COP distance, time spent on the sharpened Romberg test with neck extension (SRNE) were measured. Measurements were performed three times before training, three weeks after training, and six weeks after training. Participants were randomly assigned to three groups: fast velocity-mechanical horse -riding training (FV-MHRT, n=12), moderate velocity-mechanical horse-riding training (MV-MHRT, n=12), and slow velocity-mechanical horse-riding training (SV-MHRT, n=12). Results: According to the result for vertical, horizontal EOG, there was significant interaction in each group in accordance with the experiment time (p<0.05). The FV-MHRT group showed a significant decrease compared with the MV- MHRT, SV-MHRT groups (p<0.05). According to the result for static postural balance, the time spent, COP distance in SRNE showed significant interaction in each group in accordance with the experiment time (p<0.05). The time spent on the SRNE showed a significant increas in FV-MHRT, SV-MHRT (p<0.05). The COP distance of SRNE showed a significant increase in MV-MHRT (p<0.05). Conclusion: The MHRT velocity activated mechanism of vestibular spinal reflex (VSR), vestibular ocular reflex (VOR), also helped to strengthen vestibular function and static postural balance. In addition, it should be applied to different velocity of MHRT according to the specific purpose.

Study on the Effects of Tetrax®-based Combined Rehabilitation Exercise on Chronic Back Pain Cases

  • Park, Jae-Yong;Lee, Jung-Chul;Cheon, Min-Woo
    • Transactions on Electrical and Electronic Materials
    • /
    • v.15 no.3
    • /
    • pp.144-148
    • /
    • 2014
  • The purpose of this research is to utilizing the Tetrax$^{(R)}$ balance measuring instrument in order to analyze the postural balance of males and females in their 30 s diagnosed with chronic lower back pain who have followed a 12-week rehabilitation exercise program. The research also examines the effects on any change in back pain level. In terms of the variables in this research, postural balance (left/right, front/back, postural balance) and pain level change (0~100 mm) were measured. Pre-/post-experimental differences were assessed using the paired-t test. In addition, to identify any gender gap, we set the preliminary scores as a covariate and ran the Analysis of Covariance. Statistical significance (a) herein was set at 0.05. As a result of this research experiment, the left/right, front/back, and overall postural balance were found to increase in both the male and female cases, but with no statistical significance or gender gap. However, both males and females showed a significant decrease in their back pain levels. These findings demonstrate the necessity of continuing clinical research based on the Tetrax$^{(R)}$ equipment for scientific evaluation of the effects of rehabilitation exercises on chronic lower back pain patients and their balancing ability.