• Title/Summary/Keyword: postharvest handling

Search Result 25, Processing Time 0.023 seconds

Post Harvest Technology for High Quality Rice (고품질 쌀 생산을 위한 수확 후 관리기술)

  • 김동철
    • Proceedings of the Korean Society of Postharvest Science and Technology of Agricultural Products Conference
    • /
    • 2002.08a
    • /
    • pp.54-63
    • /
    • 2002
  • Post-harvest technology for rice was focused on in-bin drying system, which consists of about 100, 000 facilities in 1980s. The modernized Rice Processing Complex (RPC) and Drying Storage Center (DSC) became popular for rice dry, storage, process and distribution from 1990s. However, the percentage of artificial drying for rice is 48% (2001) and the ability of bulk storage is about 15%. Therefore it is necessary to build enough drying and bulk storage facilities. The definition of high quality rice is to satisfy both good appearance and good taste. The index for good taste in rice is a below 7% of protein, 17-20% of amylose, 15.5-16.5% of moisture contents and high concentration of Mg and K. To obtain a high quality rice, it is absolutely needed to integrate high technologies including breeding program, cropping methods, harvesting time, drying, storing and processing methodologies. Generally, consumers prefer to rice retaining below b value of 5 in colorimetry, and the whiteness, the hardness and the moisture contents of rice are in order of consumer preference in rice quality. By selection of rice cultivars according to acceptable quality, the periods between harvesting time and drying reduced up to about 20 days. Therefore it is necessary to develop a low temperature grain drying system in order to (1) increase the rate of artificial rice drying up to 85%, (2) keep the drying temperature of below 45C, (3) maintain high quality in rice and (4) save energy consumption. Bulk storage facilities with low temperature storage system (7-15C) for rice using grain cooler should be built to reduce labor for handling and transportation and to keep a quality of rice. In the cooled rice, there is no loss of grain quality due to respiration, insect and microorganism, which results in high quality rice containing 16% of moisture contents all year round. In addition, introducing a low temperature milling system reduced the percentage of broken rice to 2% and increased the percentage of head rice to 3% because of proper hardness of grain. It has been noted that the broken rice and cracking reduced significantly by using low pressure milling and wet milling. Our mission for improving rice market competitiveness goes to (1) produce environment friendly, functional rice cultivars, (2) establish a grade standard of rice quality, (3) breed a new cultivar for consumer oriented and (4) extend the period of storage and shelf life of rice during postharvest.

  • PDF

Prediction of Soluble Solids Content of Chestnut using VIS/NIR Spectroscopy

  • Park, Soo Hyun;Lim, Ki Taek;Lee, Hoyoung;Lee, Soo Hee;Noh, Sang Ha
    • Journal of Biosystems Engineering
    • /
    • v.38 no.3
    • /
    • pp.185-191
    • /
    • 2013
  • Purpose: The present study focused on the estimation of soluble solids content (SSC) of chestnut using reflectance and transmittance spectra in range of VIS/NIR. Methods: Four species intact/peeled chestnuts were used for acquisition of spectral data. Transmittance and reflectance spectra were used to develop the best PLS model to estimate SSC of chestnut. Results: The model developed with the transmitted energy spectra of peeled chestnuts rather than intact chestnuts and with range of NIR rather than VIS performed better. The best $R^2$ and RMSEP of cross validation were represented as 0.54 and $1.85^{\circ}Brix$. The results presented that the reflectance spectra of peeled chestnuts by species showed the best performance to predict SSC of chestnut. $R^2$ and RMSEP were 0.55 and $1.67^{\circ}Brix$. Conclusions: All developed models showed RMSEP around $1.44{\sim}2.54^{\circ}Brix$, which is considered not enough to estimate SSC accurately. It was noted that $R^2$ of cross validation that we found were not high. For all that, grading of the fruits in two or three classes of SSC during postharvest handling seems possible with an inexpensive spectrophotometer. Furthermore, the development of estimation of SSC by each chestnut species could be considered in that SSC distribution is clustering in different range by species.

Effect of preharvest application of chitosan on the growth and quality of peach fruit (Prunus persica L.)

  • Bae, Tae-Min;Seo, Joung-Seok;Kim, Jin-Gook;Kim, Do-Kyung;Chun, Jong-Pil;Hwang, Yong-Soo
    • Korean Journal of Agricultural Science
    • /
    • v.45 no.4
    • /
    • pp.601-614
    • /
    • 2018
  • Chitosan with a natural antimicrobial property has been introduced to protect horticultural crops from diseases as an environmentally friendly method. The purpose of this study was to investigate the effects of the pre-harvest application of chitosan on growth and quality during the late stage of fruit development and on the simulated marketing of the peach fruit (Prunus persica L.). The application of chitosan with calcium chloride ($100mg{\cdot}L^{-1}$) three times at one week intervals 4 weeks before the harvest significantly increased the fruit weight, changed the fruit shape, and reduced the fruit length/diameter ratio giving the peach fruits a round oblate shape. The calcium treatment contributed to enhancing or maintaining the storage potential by increasing the flesh firmness. However, at higher concentrations of $CaCl_2$, i.e., > $600mg{\cdot}L^{-1}$, the positive effects of the chitosan application were offset, and fruit growth was not affected by calcium alone. The application of the chitosan/calcium mixture delayed fruit softening; however, this effect was shortened when the storage temperature was $20^{\circ}C$ rather than $15^{\circ}C$. The internal quality of the fruit was profoundly affected by the concentration of calcium added to the chitosan, and delayed fruit maturation was observed at a higher concentration of calcium. The pre-harvest application of chitosan with calcium contributes to the enhancement of food safety by inhibiting the occurrence of diseases during postharvest handling. Considering the above results, chitosan has the potential to improve both the yield of peach fruits and their storability. Because chitosan can enhance the freshness and shelf-life of fresh produce, it is necessary to examine its effects on other horticultural crops.

Effects of Ice Cooling Storage on Chemical Components in Vegetable Corn (풋옥수수의 얼음 저장이 종실성분 변화에 미치는 영향)

  • 손영구;김성열;김선림;황종진
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.42 no.1
    • /
    • pp.95-103
    • /
    • 1997
  • This experiment was carried out to obtain the basic information necessary to establish suitable postharvest handling techniques and to keep high quality of the sweet(Danok 2), supersweet(Cooktail 86) and waxy(Chalok 1) corn which are mainly consumed as vegetable in Korea. Vegetable corns were cooled with ice fragments in the insulation box immediately after harvest and stored in low temperature warehouse at 0 to 2$^{\circ}C$. During the 15 days short-term storage, changes of chemical components were compared with those of uncooled corns. The losses of moisture in kernels were as high as 7.4 to 24.4% in uncooled corns while those of ice cooled corns increased 0.4 to 0.5% of their weight. The ratio of pericarp and alcohol insoluble solid(AIS) content increased as the storage days prolonged in all treatments but increasing rates were much higher in uncooled samples. On the other hand, the total sugar loss during storage was the least in supersweet corn when they were cooled with ice fragments in insulation box. After 5 days storage, the ice cooled samples showed the highest free amino acid contents compare to those of uncooled and stored at room temperature (25 to 3$0^{\circ}C$) or low temperature warehouse, and ${\gamma}$-aminobutylic acid (GABA) which was known as a fuctional amino acid was detected in all three kinds of vegetable corns.

  • PDF

Project of Improving Good Agriculture Practice and Income by Intergrated Agricultural Farming (미얀마 우수농산물 재배기술 전수사업)

  • Lee, Young-Cheul;Choi, Dong-Yong
    • Journal of Practical Agriculture & Fisheries Research
    • /
    • v.16 no.1
    • /
    • pp.193-206
    • /
    • 2014
  • The objectives of the project are to increase farmers' income through GAP and to reduce the loss of agricultural produce, for which the Korean partner takes a role of transferring needed technologies to the project site. To accomplish the project plan, it is set to implement the project with six components: construction of buildings, installation of agricultural facilities, establishment of demonstration farms, dispatching experts, conducting training program in Korea and provision of equipments. The Project Management Committee and the Project Implementation Team are consisted of Korean experts and senior officials from Department of Agriculture, Myanmar that managed the project systematically to ensure the success of the project. The process of the project are; the ceremony of laying the foundation and commencing the construction of training center in April, 2012. The Ribbon Cutting Ceremony for the completion of GAP Training Center was successfully held under PMC (MOAI, GAPI/ARDC) arrangement in SAl, Naypyitaw on June 17, 2012. The Chairman of GAPI, Dr. Sang Mu Lee, Director General U Kyaw Win of DOA, officials and staff members from Korea and Myanmar, teachers and students from SAl attended the ceremony. The team carried out an inspection and fixing donors' plates on donated project machineries, agro-equipments, vehicles, computers and printer, furniture, tools and so forth. Demonstration farm for paddy rice, fruits and vegetables was laid out in April, 2012. Twenty nine Korean rice varieties and many Korean vegetable varieties were introduced into GAP Project farm to check the suitability of the varieties under Myanmar growing conditions. Paddy was cultivated three times in DAR and twice in SAl. In June 2012, vinyl houses were started to be constructed for raising seedlings and finished in December 2012. Fruit orchard for mango, longan and dragon fruit was established in June, 2012. Vegetables were grown until successful harvest and the harvested produce was used for panel testing and distribution in January 2013. Machineries for postharvest handling systems were imported in November 2012. Setting the washing line for vegetables were finished and the system as run for testing in June 2013. New water tanks, pine lines, pump house and electricity were set up in October 2013.