• 제목/요약/키워드: postbuckling

검색결과 83건 처리시간 0.021초

Free vibration of thermo-electro-mechanically postbuckled FG-CNTRC beams with geometric imperfections

  • Wu, Helong;Kitipornchai, Sritawat;Yang, Jie
    • Steel and Composite Structures
    • /
    • 제29권3호
    • /
    • pp.319-332
    • /
    • 2018
  • This paper investigates the free vibration of geometrically imperfect functionally graded car-bon nanotube-reinforced composite (FG-CNTRC) beams that are integrated with two sur-face-bonded piezoelectric layers and subjected to a combined action of a uniform temperature rise, a constant actuator voltage and an in-plane force. The material properties of FG-CNTRCs are assumed to be temperature-dependent and vary continuously across the thick-ness. A generic imperfection function is employed to simulate various possible imperfections with different shapes and locations in the beam. The governing equations that account for the influence of initial geometric imperfection are derived based on the first-order shear deformation theory. The postbuckling configurations of FG-CNTRC hybrid beams are determined by the differential quadrature method combined with the modified Newton-Raphson technique, after which the fundamental frequencies of hybrid beams in the postbuckled state are obtained by a standard eigenvalue algorithm. The effects of CNT distribution pattern and volume fraction, geometric imperfection, thermo-electro-mechanical load, as well as boundary condition are examined in detail through parametric studies. The results show that the fundamental frequency of an imperfect beam is higher than that of its perfect counterpart. The influence of geometric imperfection tends to be much more pronounced around the critical buckling temperature.

압전적층판의 열-압전-탄성 동적 비선형 작동특성 (Thermopiezoelastic Nonlinear Dynamic Characteristics of Piezolaminated Plates)

  • 오일권
    • 한국소음진동공학회논문집
    • /
    • 제15권7호
    • /
    • pp.836-842
    • /
    • 2005
  • Nonlinear dynamic characteristics of active piezolaminated plates are investigated with respect to the thermopiezoelastic behaviors. For largely deformed structures with small strain, the incremental total Lagrangian formulation is presented based on the virtual work principles. A multi-field layer-wise finite shell element is proposed for assuring high accuracy and non-linearity of displacement, electric and thermal fields. For dynamic consideration of thermopiezoelastic snap-through phenomena, the implicit Newmark's scheme with the Newton-Raphson iteration is implemented for the transient response of various piezolaminated models with symmetric or eccentric active layers. The bifurcate thermal buckling of symmetric structural models is first investigated and the characteristics of piezoelectric active responses are studied for finding snap-through piezoelectric potentials and the load-path tracking map. The thermoelastic stable and unstable postbuckling, thermopiezoelastic snap-through phenomena with several attractors are proved using the nonlinear time responses for various initial conditions and damping loss factors. Present results show that thermopiezoelastic snap-through phenomena can result in the difficulty of buckling and postbuckling control of intelligent structures.

Energy equivalent model in analysis of postbuckling of imperfect carbon nanotubes resting on nonlinear elastic foundation

  • Mohamed, Nazira;Eltaher, Mohamed A.;Mohamed, Salwa A.;Seddek, Laila F.
    • Structural Engineering and Mechanics
    • /
    • 제70권6호
    • /
    • pp.737-750
    • /
    • 2019
  • This paper investigates the static and dynamic behaviors of imperfect single walled carbon nanotube (SWCNT) modeled as a beam structure by using energy-equivalent model (EEM), for the first time. Based on EEM Young's modulus and Poisson's ratio for zigzag (n, 0), and armchair (n, n) carbon nanotubes (CNTs) are presented as functions of orientation and force constants. Nonlinear Euler-Bernoulli assumptions are proposed considering mid-plane stretching to exhibit a large deformation and a small strain. To simulate the interaction of CNTs with the surrounding elastic medium, nonlinear elastic foundation with cubic nonlinearity and shearing layer are employed. The equation governed the motion of curved CNTs is a nonlinear integropartial-differential equation. It is derived in terms of only the lateral displacement. The nonlinear integro-differential equation that governs the buckling of CNT is numerically solved using the differential integral quadrature method (DIQM) and Newton's method. The linear vibration problem around the static configurations is discretized using DIQM and then is solved as a linear eigenvalue problem. Numerical results are depicted to illustrate the influence of chirality angle and imperfection amplitude on static response, buckling load and dynamic behaviors of armchair and zigzag CNTs. Both, clamped-clamped (C-C) and simply supported (SS-SS) boundary conditions are examined. This model is helpful especially in mechanical design of NEMS manufactured from CNTs.

공간트러스구조의 탄소성 후좌굴 해석 (Elasto-Plastic Postbuckling Analysis of Space Truss Structures)

  • 이상환;권익노;김응교
    • 한국공간정보시스템학회:학술대회논문집
    • /
    • 한국공간정보시스템학회 2004년도 춘계 학술발표회 논문집 제1권1호(통권1호)
    • /
    • pp.37-42
    • /
    • 2004
  • The primary objective of this paper is to trace the post-buckling behavior of space trusses in the inelastic range. Modeled member material behavior characteristics of struts in the post-critical elasto-plastic stage are determined and three types of idealized hardening rules are described. To perform this analysis, the present work is used the current stiffness parameter method combined with the cylinderical arc-length method. Numerical examples are presented to illustrate the accuracy and the application of the numerical solutions introduced above.

  • PDF

다양한 두께비와 세장비를 고려한 복합재 원통 구조의 좌굴 Knockdown factor의 도출 (Derivations of Buckling Knockdown Factors for Composite Cylinders Considering Various Shell Thickness Ratios and Slenderness Ratios)

  • 김도영;심창훈;김한일;박재상;유준태;윤영하;이기주
    • 한국항공우주학회지
    • /
    • 제49권4호
    • /
    • pp.321-328
    • /
    • 2021
  • 본 연구에서는 우주 발사체의 복합재 추진제 탱크 구조의 경량 설계를 위하여 좌굴 Knockdown factor를 ABAQUS를 이용한 수치해석 기반으로 새롭게 도출하였다. 복합재 원통 구조의 다양한 두께비(R/t)와 세장비(L/R)를 적절히 고려하였으며, 기하학적 초기 결함을 Single Perturbation Load Approach를 이용하여 구현하였다. 두께비 = 500 및 세장비 = 2.04를 갖는 복합재 원통 구조의 모델의 경우, NASA의 기존 좌굴 설계 기준보다 약 84.38%만큼 좌굴 Knockdown factor가 높게 도출되어 본 연구의 좌굴 설계 기준을 이용할 경우 복합재 추진제 탱크의 경량 구조 설계가 가능함을 확인하였다. 더불어, 복합재 원통 구조의 두께비와 세장비가 각각 증가함에 따라 전역 좌굴 하중과 좌굴 Knockdown factor가 모두 감소하는 경향을 알 수 있었다.

강곡선 플레이트거더 복부판의 중간수직보강재 소요강성에 관한 연구 (The Rigidity of Transverse Intermediate Stiffener of Horizontally Curved Plate Girder Web Panels)

  • 이두성;박찬식;이성철
    • 대한토목학회논문집
    • /
    • 제26권4A호
    • /
    • pp.735-742
    • /
    • 2006
  • 실 설계에서 적용되는 강곡선 플레이트거더교의 기하학적인 설계범위 내에서 횡방향변형이 충분히 지지된 강곡선 플레이트거더 복부판의 극한전단강도는 비록 직선복부판에 비해 후좌굴강도는 감소할지라도 탄성좌굴강도가 상대적으로 증가한다. 또한 강곡선 플레이트거더 복부판의 극한전단강도는 후좌굴강도를 포함한 직선플레이트거더 복부판의 극한전단강도와 같은 크기를 발현하고 있음이 여러 연구를 통해서 입증되었다. 본 연구에서는 강곡선 플레이트거더 복부판이 극한전단강도를 발현하기 위한 중간수직보강재의 소요강성에 관한 수치해석연구를 수행하였다. 수치해석결과로부터 후좌굴거동이 존재하는 강곡 선플레이트거더 복부판이 후좌굴강도를 충분히 발현하기 위해서는 현행 Guide Specifications(AASHTO, 2003)의 중간수직보강재 강성이 후좌굴거동 시에 단순지지역할을 하기에는 부족한 것으로 조사되었으며, 이를 기초로 전단좌굴강도비에 따른 소요강성식을 제안하였다.

Experimental investigation on the buckling of thin cylindrical shells with two-stepwise variable thickness under external pressure

  • Aghajari, Sirous;Showkati, Hossein;Abedi, Karim
    • Structural Engineering and Mechanics
    • /
    • 제39권6호
    • /
    • pp.849-860
    • /
    • 2011
  • The buckling capacity of the cylindrical shells depends on two geometric ratios of L/R and R/t. However the effect of thickness variation on the behavior of the shells is more complicated and the buckling strength of them is sensitive to the magnitude and shape of geometric imperfections. In this paper the effects of thickness variation and geometric imperfections on the buckling and postbuckling behavior of cylindrical shells are experimentally investigated. The obtained results are presented under the effect of uniform lateral pressure. It is found in this investigation that the buckling mode can be generated in the whole length of the shell, if the thickness variation is low.

New phenomena associated with the nonlinear dynamics and stability of autonomous damped systems under various types of loading

  • Sophianopoulos, Dimitris S.
    • Structural Engineering and Mechanics
    • /
    • 제9권4호
    • /
    • pp.397-416
    • /
    • 2000
  • The present study deals with the nonlinear dynamics and stability of autonomous dissipative either imperfect potential (limit point) systems or perfect (bifurcational) non-potential ones. Through a fully nonlinear dynamic analysis, performed on two simple 2-DOF models corresponding to the classes of systems mentioned above, and with the aid of basic definitions of the theory of nonlinear dynamical systems, new important phenomena are revealed. For the first class of systems a third possibility of postbuckling dynamic response is offered, associated with a point attractor on the prebuckling primary path, while for the second one the new findings are chaos-like (most likely chaotic) motions, consecutive regions of point and periodic attractors, series of global bifurcations and point attractor response of always existing complementary equilibrium configurations, regardless of the value of the nonconservativeness parameter.

THERMAL POSTBUCKLING CHARACTERISTICS OF STEP-FORMED FG PANELS WITH TEMPERATURE-DEPENDENT MATERIAL IN SUPERSONIC FLOW

  • Lee, Sang-Lae;Kim, Ji-Hwan
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2007년도 춘계학술대회A
    • /
    • pp.566-571
    • /
    • 2007
  • In this study, it is investigated the thermal post-buckling characteristics of step-formed FG panel under the heat and supersonic flow. Material properties are assumed to be temperature dependent as well as continuously varying in the thickness direction of the panel according to a simple power law distribution in terms of the volume fraction of the constituent. First-order shear deformation theory(FSDT) of plate is applied to model the panel, and the von Karman strain-displacement relations are adopted to consider the geometric nonlinearity due to large deformation. Also, the first-order piston theory is used to model the supersonic aerodynamic load acting on a panel. Numerical results are summarized to reveal the thermal post-buckling behaviors of FG panels with various volume fractions, temperature conditions and aerodynamic pressures in detail.

  • PDF