• Title/Summary/Keyword: post-weld heat treatment

Search Result 117, Processing Time 0.024 seconds

Optimization of Bar-to-Bar Dissimilar Friction Welding of Hydraulic Valve Spool Steel and the Weld Strength Properties and Its AE Evaluation (유공압 밸브 스풀용 강재의 봉대봉 이종재 마찰 용접 최적화와 용접강도 특성 및 AE 평가)

  • 오세규;유인종;박형동;이연탁
    • Journal of Ocean Engineering and Technology
    • /
    • v.10 no.3
    • /
    • pp.24-33
    • /
    • 1996
  • Up to now, most of studies on mechanical properties in friction welded components are about tensile and bending strength. However the fatigue studies on the friction-welded components subjected to repeated stress are not available. The purposes of this study are the development of fundamental design and the development of in-process real-time weld quality evaluation technique by acoustic emission for the bar-to-bar dissimilar friction welding of hydraulic valve spool steels.

  • PDF

Techniques for Estimating Temper Bead Welding Process by using Temperature Curves of Analytical Solution (해석 해의 온도곡선을 이용한 템퍼비이드 용접공정 평가기술)

  • Lee, Ho-Jin;Lee, Bong-Sang;Park, Kwang-Soo;Byeon, Jin-Gwi;Jung, In-Chul
    • Journal of Welding and Joining
    • /
    • v.28 no.5
    • /
    • pp.51-57
    • /
    • 2010
  • Brittle microstructure created in a heat affected zone (HAZ) during the welding of low alloy steel can be eliminated by post-weld heat treatment (PWHT). If the PWHT is not possible during a repair welding, the controlled bead depositions of multi-pass welding should be applied to obtain tempering effect on the HAZ without PWHT. In order to anticipate and control the tempering effect during the temper bead welding, the definition of temperature curve obtained from the analytical solution was suggested in this research. Because the analytical solution for heat flow is expressed as a mathematical equation of weld parameters, it may be effective in anticipating the effect of each weld parameter on the tempering in HAZ during the successive bead depositions. The reheating effect by the successive bead layer on the brittle coarse grained HAZ formed by earlier bead deposition was estimated by comparing the overlapped distance between the temperature curves in the HAZ. Three layered weld specimens of SA508 base metal with A52 filler were prepared by controlling heat input ratio between layers. The tempering effect anticipated by using the overlapped distance between the temperature curves was verified by measuring the micro-hardness distribution in the HAZ of prepared specimens. The temperature curve obtained from analytical solution was expected as a good tool to find optimal temper bead welding conditions.

A Study of Characteristics on the Dissimilar Metals (Alloy steel : A387 Gr. 91 - Carbon Steel : A516 Gr. 70) Welds Made with FCA Multiple Layer Welding: Part 2 (합금강(ASTM A387 Gr. 91) - 탄소강(ASTM A516 Gr.70) 이종금속의 FCA 다층 용접부 특성 평가 : Part. 2)

  • Shin, Tae Woo;Hyun, Jun Hyeok;Koh, Jin Hyun
    • Journal of Welding and Joining
    • /
    • v.35 no.3
    • /
    • pp.68-74
    • /
    • 2017
  • Characteristics of dissimilar metal welds between alloy steel ASTM A387 Gr. 91 and carbon steel ASTM A516 Gr.70 made with Flux cored arc welding(FCAW) have been evaluated in terms of microstructure, mechanical strength, chemical analysis by EDS as well as corrosion test. Three heat inputs of 15.0, 22.5, 30.0kJ/cm were employed to make joints of dissimilar metals with E71T-1C wire. Post-weld heat treatment was carried out at $750^{\circ}C$ for 2.5 h. Based on microstructural examination, Intragranular polygonal ferrite and grainboundary ferrite were formed only in first layer of weld metal. Another layers consisted of acicular ferrite and $Widmannst{\ddot{a}}tten$ ferrite. The amount of acicular ferrite was increased with decreasing heat input and layer. Heat affected zone of alloy steel showed the highest hardness due to the formation of tempered martensite and lower bainite. Lower and upper bainite were formed in heat affected zone of carbon steel. Tensile strengths of dissimilar metal welds decreased with increasing heat inputs. Dissimilar metal welds showed a good hot cracking resistance due to the low HCS index below 4. The salt spray test of dissimilar metals welds showed that the weight loss rate by corrosion below 170 hours was decreased with increasing heat inputs due to the increase of the amount of acicular ferrite.

The Characteristics of Residual Stresses in the Welded Joint of P92 Steel for Fossil Power Plant by the X-ray Diffraction (X-ray 회절을 이용한 화력발전소용 P92 강 용접부의 잔류응력 특성)

  • Hyun, Jung-Seob;Yoo, Keun-Bong;Choi, Hyun-Sun
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.25 no.7
    • /
    • pp.116-123
    • /
    • 2008
  • In the fossil power plant, the reliability of the components which consist of the many welded parts depends on the quality of welding. The residual stress is occurred by the heat flux of high temperature during weld process. This decreases the mechanical properties as the strength of fatigue and fracture or causes the stress corrosion cracking and fatigue fracture. Especially, the accidents due to the residual stress occurred at the weld parts of high-temperature and high-pressure pipes and steam headers. Also, the residual stress of the welded part in the recently constructed power plants has been brought into relief as the cause of various accidents. The aim of this study is the measurement of the residual stress using the x-ray diffraction method. The merits of this are more accurate and applicable than other methods. The materials used for the study is P92 steel for the use of high temperature pipe on super critical condition. The variables of tests are the post-weld heat treatment, the surface roughness and the depth from the original surface. The test results were analyzed by the distributed characteristics of the full width at half maximum intensity (FWHM) in x-ray diffraction intensity curve and by the relation of hardness with FWHM.

Effect of laser welding variables on the formability of Si added steel welds (Si 첨가강의 레이저용접부 성형성에 미치는 용접변수의 영향)

  • Park Jun-Sik;U In-Su;Lee Jong-Bong
    • Proceedings of the KWS Conference
    • /
    • 2006.05a
    • /
    • pp.121-123
    • /
    • 2006
  • The aim of present study is to investigate the effect of welding parameters and heat treatment conditions on the formability of the laser welded silicon steel sheet. It was found that there is optimum range of the heat input ($0.6{\sim}0.7kJ/cm$) and gap distance ($0.125{\sim}0.150mm$) for the high tensile strength and the avoidance of the fracture in weld metal, Also, it was essential for the improvement of formability to perform pre- and post-welding heat treatment which cause the uniform mixture of base metal and welding consumable.

  • PDF

Evaluation of PWHT cracking susceptibility of the Cr-Mo steel alloys (Cr-Mo 합금강의 후열처리 균열 감수성 평가)

  • Kim, Sang-Jin;Kim, Ki-Soo;Lee, Young-Ho
    • 대한공업교육학회지
    • /
    • v.31 no.1
    • /
    • pp.200-210
    • /
    • 2006
  • This C-ring test, normally employed for evaluating susceptibility to stress-corrosion cracking, was determined to be a suitable small scale test to evaluate PWHT(Post-Weld Heat Treatment) cracking susceptibility. This test is possible to incorporate an actual weld, to introduce a notch into the coarse grained HAZ(Heat Affected Zone), to load the coarse grained HAZ any level of stress ad, most importantly, since the C-ring is an approximately constant strain type test, the stress decreases with time at temperature in a manner similar to that of an actual steel weldment. The procedure employed in making the C-ring was presented in the experimental procedure section, however, several points deserve further discussion. The walls of the weld groove are made along radial lines form the center of th var in order to obtain an HAZ which is oriented perpendicular to the walls of the machined C-ring. Therefore, the plane of maximum stress will be aligned through the HAZ and, therefore, crack propagation will not be forced to deviate form the plane of maximum stress in order to remain in the coarse grained HAZ as is the case with the Y groove test.

A Study of Characteristics on the Dissimilar Metals (Alloy Steel : A387 Gr. 91 - Carbon Steel : A516 Gr. 70) Welds Made with FCA Multiple Layer Welding : Part 1 (합금강(ASTM A387 Gr. 91) - 탄소강(ASTM A516 Gr.70) 이종금속의 FCA 다층 용접부 특성 평가 : Part. 1)

  • Shin, Tae Woo;Jang, Bok Su;Koh, Jin Hyun
    • Journal of Welding and Joining
    • /
    • v.34 no.3
    • /
    • pp.61-68
    • /
    • 2016
  • Characteristics of dissimilar metal welds between alloy steel ASTM A387 Gr. 91 and carbon steel ASTM A516 Gr.70 made with Flux cored arc welding(FCAW) have been evaluated in terms of microstructure, mechanical strength, chemical analysis by EDS as well as corrosion test. Three heat inputs of 15.0, 22.5, 30.0kJ/cm were employed to make joints of dissimilar metals with E91T1-B9C wire. Post-weld heat treatment was carried out at $750^{\circ}C$ for 2.5 h. Based on microstructural examination, tempered martensite and lower bainite were formed in first layer of weld metal. The amount of tempered martensite was decreased and the amount of lower bainite was increased with increasing heat input and layer. Heat affected zone of alloy steel showed the highest hardness due to the formation of tempered Martensite and lower Bainite. Tensile strengths of dissimilar welds decreased with increasing heat inputs. Dissimilar welds seemed to have a good hot cracking resistance due to the low HCS index below 4. The salt spray test of dissimilar metals showed that the corrosion rate increased with increasing heat inputs due to the increase of the amount of lower Bainite.

A Study on the Effects of local PWHT on the Residual Stress of the Weldment in Pressure Vessel (압력용기 용접부 국부 열처리에 따른 잔류응력 거동에 관한 연구)

  • Lee, Hui-Tae;Kim, Gyeong-Gyu
    • Proceedings of the KWS Conference
    • /
    • 2006.10a
    • /
    • pp.18-19
    • /
    • 2006
  • The purpose of this study is to evaluate the behavior of residual stress at the weldment of pressure vessel by local Post Weld Heat Treatment(PWHT). In order to do it, residual stress were measured before and after local PWHT by XRD on the test piece first. And then, the results of finite element(FE) analysis based on thermal-elasto-plastic-creep theories were verified by comparing with the measured results.

  • PDF

Friction Weldability of Grey Cast Iron - by the Concept of Friction Weld Heat Input Parameter - (회주철의 마찰용접 특성에 관한 연구 - 입열량 이론식을 중심으로 -)

  • Jeong, Ho-Shin;Bang, Kook-Soo
    • Journal of Welding and Joining
    • /
    • v.32 no.3
    • /
    • pp.95-101
    • /
    • 2014
  • Joining of grey cast iron by fusion welding has much difficulties for its extremely low ductility and low toughness because of the flake form of the graphite. And the brittle microstructure, i.e. ledeburite may be formed during fusion welding by its rapid cooling rates. By these kinds of welding problem, preheat and post heat treatment temperature must be increased to avoid weld crack or welding problems. In order to avoid these fusion welding problem, friction welding of cast iron was carried out for improving joint soundness, establishing friction welding variables. There is no factor for evaluating friction weldability in continuous drive type friction welding. In this point of view, this study proposed the parameters for calculating friction weld heat input. The results obtained are as follows ; 1. There was a close relationship between tensile strength and flash appearance of friction welded joint. 2. Tensile strength was decreased and flash was severely oxidized as increasing frictional heating time. 3. As increased forging pressure $P_2$, flash had a large crack and tensile strength was decreased. 4. As powdered graphite by rotational frictional force induced flat surface and hindered plastic flow of metal, tensile strength of welded joint was decreased. 5. Heat input for continuous drive type friction welding could be calculated by the factors of $P_1$, $P_2$ and upset distance(${\delta}$).

Effects of Annealing and Post-weld Heat Treatments on Corrosion Behaviors of Super Austenitic Stainless Steel (소둔 및 용접후열처리가 슈퍼 오스테나이트계 스테인리스강의 부식거동에 미치는 영향)

  • Yun, Duck Bin;Park, Jin Sung;Cho, Dong Min;Hong, Seung Gab;Kim, Sung Jin
    • Corrosion Science and Technology
    • /
    • v.20 no.6
    • /
    • pp.426-434
    • /
    • 2021
  • The effect of two different annealing temperatures on the level of the second phase precipitated in the microstructure and the corrosion behaviors of super austenitic stainless steel were examined. The sample annealed at a higher temperature had a significantly lower fraction of the sigma phase enriched with Cr and Mo elements, showing more stable passivity behavior during the potentiodynamic polarization measurement. However, after the welding process with Inconel-type welding material, severe corrosion damage along the interface between the base metal and the weld metal was observed regardless of the annealing temperature. This was closely associated with the precipitation of the fine sigma phase with a high Mo concentration in the unmixed zone (UMZ) during the welding process, leading to the local depletion of Mo concentrations around the sigma phase. On the other hand, the fraction of the newly precipitated fine sigma phase in the UMZ was greatly reduced by post-weld heat treatment (PWHT), and the corrosion resistance was greatly improved. Based on the results, it is proposed that the alloy composition of welding materials and PWHT conditions should be further optimized to ensure the superior corrosion resistance of welded super austenitic stainless steel.