• 제목/요약/키워드: post-critical buckling

검색결과 49건 처리시간 0.019초

Post-buckling behaviours of axially restrained steel columns in fire

  • Li, Guo-Qiang;Wang, Peijun;Hou, Hetao
    • Steel and Composite Structures
    • /
    • 제9권2호
    • /
    • pp.89-101
    • /
    • 2009
  • This paper presents a simplified model to study post-buckling behaviours of the axially restrained steel column at elevated temperatures in fire. The contribution of axial deformation to the curvature of column section is included in theoretical equations. The possible unloading at the convex side of the column when buckling occurs is considered in the stress-strain relationship of steel at elevated temperatures. Parameters that affect structural behaviours of the axial restrained column in fire are studied. The axial restraint cause an increase in the axial force before the column buckles; the buckling temperature of restrained columns will be lower than non-restrained steel columns. However, the axial force of a restrained column decreases after the column buckles with the elevation of temperatures, so make use of the post-buckling behaviour can increase the critical temperature of restrained columns. Columns with temperature gradient across the section will produce lower axial force at elevated temperatures.

Large post-buckling behavior of Timoshenko beams under axial compression loads

  • Akbas, Seref D.
    • Structural Engineering and Mechanics
    • /
    • 제51권6호
    • /
    • pp.955-971
    • /
    • 2014
  • Large post-buckling behavior of Timoshenko beams subjected to non-follower axial compression loads are studied in this paper by using the total Lagrangian Timoshenko beam element approximation. Two types of support conditions for the beams are considered. In the case of beams subjected to compression loads, load rise causes compressible forces end therefore buckling and post-buckling phenomena occurs. It is known that post-buckling problems are geometrically nonlinear problems. The considered highly non-linear problem is solved considering full geometric non-linearity by using incremental displacement-based finite element method in conjunction with Newton-Raphson iteration method. There is no restriction on the magnitudes of deflections and rotations in contradistinction to von-Karman strain displacement relations of the beam. The beams considered in numerical examples are made of lower-Carbon Steel. In the study, the relationships between deflections, rotational angles, critical buckling loads, post-buckling configuration, Cauchy stress of the beams and load rising are illustrated in detail in post-buckling case.

Thermal post-buckling analysis of a laminated composite beam

  • Akbas, Seref D.
    • Structural Engineering and Mechanics
    • /
    • 제67권4호
    • /
    • pp.337-346
    • /
    • 2018
  • The purpose of this study is to investigate thermal post-buckling analysis of a laminated composite beam subjected under uniform temperature rising with temperature dependent physical properties. The beam is pinned at both ends and immovable ends. Under temperature rising, thermal buckling and post-buckling phenomena occurs with immovable ends of the beam. In the nonlinear kinematic model of the post-buckling problem, total Lagrangian approach is used in conjunction with the Timoshenko beam theory. Also, material properties of the laminated composite beam are temperature dependent: that is the coefficients of the governing equations are not constant. In the solution of the nonlinear problem, incremental displacement-based finite element method is used with Newton-Raphson iteration method. The effects of the fibber orientation angles, the stacking sequence of laminates and temperature rising on the post-buckling deflections, configurations and critical buckling temperatures of the composite laminated beam are illustrated and discussed in the numerical results. Also, the differences between temperature dependent and independent physical properties are investigated for post-buckling responses of laminated composite beams.

Buckling and post-buckling behaviors of 1/3 composite cylindrical shell with an opening

  • Ma, Yihao;Cheng, Xiaoquan;Wang, Zhaodi;Guo, Xin;Zhang, Jie;Xu, Yahong
    • Steel and Composite Structures
    • /
    • 제27권5호
    • /
    • pp.555-566
    • /
    • 2018
  • A 1/3 composite cylindrical shell with a central rectangular opening was axially compressed experimentally, and its critical buckling load and displacement, and strains were measured. A finite element model (FEM) of the shell with Hashin failure criteria was established to analyze its buckling and post-buckling behaviors by nonlinear Newton-Raphson method. The geometric imperfection sensitivity and the effect of side supported conditions of the shell were investigated. It was found that the Newton-Raphson method can be used to analyze the buckling and post-buckling behaviors of the shell. The shell is not sensitive to initial geometric imperfection. And the support design of the shell by side stiffeners is a good way to obtain the critical buckling load and simplify the experimental fixture.

Post-buckling analysis of sandwich FG porous cylindrical shells with a viscoelastic core

  • Foroutan, Kamran;Dai, Liming
    • Steel and Composite Structures
    • /
    • 제45권3호
    • /
    • pp.349-367
    • /
    • 2022
  • In this research, an approach combining a semi-analytical method and an analytical method is presented to investigate the static and dynamic post-buckling behavior of the sandwich functionally graded (FG) porous cylindrical shells exposed to external pressure. The sandwich cylindrical shell considered is composed of a viscoelastic core and two FG porous (FGP) face layers. The viscoelastic core is made of Kelvin-Voigt-type material. The material properties of the FG porous face layer are considered continuous through each face thickness according to a porosity coefficient and a volume fraction index. Two types of sandwich FG porous viscoelastic cylindrical shells named Type A and Type B are considered in the research. Type A shell has the porosity evenly distributed across the thickness direction, and Type B has the porosity unevenly distributes across the thickness direction. The FG face layers are considered in two cases: outside metal surface, inside ceramic surface (OMS-ICS), and inside metal surface, outside ceramic surface (IMS-OCS). According to Donnell shell theory, von-Karman equation, and Galerkin's method, a discretized nonlinear governing equation is derived for analyzing the behavior of the shells. The explicit expressions for static and dynamic critical buckling loading are thus developed. To study the dynamic buckling of the shells, the governing equation is examined via a numerical approach implementing the fourth-order Runge-Kutta method. With a procedure presented by Budiansky-Roth, the critical load for dynamic post-buckling is obtained. The effects of various parameters, such as material and geometrical parameters, on the post-buckling behaviors are investigated.

Post-buckling analysis of Timoshenko beams with temperature-dependent physical properties under uniform thermal loading

  • Akbas, Seref Doguscan;Kocaturk, Turgut
    • Structural Engineering and Mechanics
    • /
    • 제44권1호
    • /
    • pp.109-125
    • /
    • 2012
  • Post-buckling behavior of Timoshenko beams subjected to uniform temperature rising with temperature dependent physical properties are studied in this paper by using the total Lagrangian Timoshenko beam element approximation. The beam is clamped at both ends. In the case of beams with immovable ends, temperature rise causes compressible forces end therefore buckling and post-buckling phenomena occurs. It is known that post-buckling problems are geometrically nonlinear problems. Also, the material properties (Young's modulus, coefficient of thermal expansion, yield stress) are temperature dependent: That is the coefficients of the governing equations are not constant in this study. This situation suggests the physical nonlinearity of the problem. Hence, the considered problem is both geometrically and physically nonlinear. The considered highly non-linear problem is solved considering full geometric non-linearity by using incremental displacement-based finite element method in conjunction with Newton-Raphson iteration method. The beams considered in numerical examples are made of Austenitic Stainless Steel (316). The convergence studies are made. In this study, the difference between temperature dependent and independent physical properties are investigated in detail in post-buckling case. The relationships between deflections, thermal post-buckling configuration, critical buckling temperature, maximum stresses of the beams and temperature rising are illustrated in detail in post-buckling case.

Post-buckling analysis of aorta artery under axial compression loads

  • Akbas, Seref Doguscan;Mercan, Kadir;Civalek, Omer
    • Advances in nano research
    • /
    • 제8권3호
    • /
    • pp.255-264
    • /
    • 2020
  • Buckling and post-buckling cases are often occurred in aorta artery because it affected by higher pressure. Also, its stability has a vital importance to humans and animals. The loss of stability in arteries may lead to arterial tortuosity and kinking. In this paper, post-buckling analysis of aorta artery is investigated under axial compression loads on the basis of Euler-Bernoulli beam theory by using finite element method. It is known that post-buckling problems are geometrically nonlinear problems. In the geometrically nonlinear model, the Von Karman nonlinear kinematic relationship is employed. Two types of support conditions for the aorta artery are considered. The considered non-linear problem is solved by using incremental displacement-based finite element method in conjunction with Newton-Raphson iteration method. The aorta artery is modeled as a cylindrical tube with different average diameters. In the numerical results, the effects of the geometry parameters of aorta artery on the post-buckling case are investigated in detail. Nonlinear deflections and critical buckling loads are obtained and discussed on the post-buckling case.

Post-buckling analysis of piles by perturbation method

  • Zhao, M.H.;He, W.;Li, Q.S.
    • Structural Engineering and Mechanics
    • /
    • 제35권2호
    • /
    • pp.191-203
    • /
    • 2010
  • To investigate the critical buckling load and post-buckling behavior of an axially loaded pile entirely embedded in soil, the non-linear large deflection differential equation for a pinned pile, based on the Winkler-model and the discretionary distribution function of the foundation coefficient along pile shaft, was established by energy method. Assuming that the deflection function was a power series of some perturbation parameter according to the boundary condition and load in the pile, the non-linear large deflection differential equation was transformed to a series of linear differential equations by using perturbation approach. By taking the perturbation parameter at middle deflection, the higher-order asymptotic solution of load-deflection was then found. Effect of ratios of soil depth to pile length, and ratios of pile stiffness to soil stiffness on the critical buckling load and performance of piles (entirely embedded and partially embedded) after flexural buckling were analyzed. Results show that the buckling load capacity increases as the ratios of pile stiffness to soil stiffness increasing. The pile performance will be more stable when ratios of soil depth to pile length, and soil stiffness to pile stiffness decrease.

Post-buckling of higher-order stiffened metal foam curved shells with porosity distributions and geometrical imperfection

  • Mirjavadi, Seyed Sajad;Forsat, Masoud;Barati, Mohammad Reza;Hamouda, A.M.S.
    • Steel and Composite Structures
    • /
    • 제35권4호
    • /
    • pp.567-578
    • /
    • 2020
  • Based on third-order shear deformation shell theory, the present paper investigates post-buckling properties of eccentrically stiffened metal foam curved shells/panels having initial geometric imperfectness. Metal foam is considered as porous material with uniform and non-uniform models. The single-curve porous shell is subjected to in-plane compressive loads leading to post-critical stability in nonlinear regime. Via an analytical trend and employing Airy stress function, the nonlinear governing equations have been solved for calculating the post-buckling loads of stiffened geometrically imperfect metal foam curved shell. New findings display the emphasis of porosity distributions, geometrical imperfectness, foundation factors, stiffeners and geometrical parameters on post-buckling properties of porous curved shells/panels.

Porosity effects on post-buckling behavior of geometrically imperfect metal foam doubly-curved shells with stiffeners

  • Mirjavadi, Seyed Sajad;Forsat, Masoud;Yahya, Yahya Zakariya;Barati, Mohammad Reza;Jayasimha, Anirudh Narasimamurthy;Hamouda, AMS
    • Structural Engineering and Mechanics
    • /
    • 제75권6호
    • /
    • pp.701-711
    • /
    • 2020
  • This papers studies nonlinear stability and post-buckling behaviors of geometrically imperfect metal foam doubly-curved shells with eccentrically stiffeners resting on elastic foundation. Metal foam is considered as porous material with uniform and non-uniform models. The doubly-curved porous shell is subjected to in-plane compressive loads as well as a transverse pressure leading to post-critical stability in nonlinear regime. The nonlinear governing equations are analytically solved with the help of Airy stress function to obtain the post-buckling load-deflection curves of the geometrically imperfect metal foam doubly-curved shell. Obtained results indicate the significance of porosity distribution, geometrical imperfection, foundation factors, stiffeners and geometrical parameters on post-buckling characteristics of porous doubly-curved shells.