• Title/Summary/Keyword: post data processing

Search Result 557, Processing Time 0.026 seconds

Development of Measurement System for Traction and Braking Performances in KTX (KTX 견인, 재동성능용 계측시스템 구축)

  • 김석원;한영재;김영국;박찬경;최강윤;김종영
    • Proceedings of the KSR Conference
    • /
    • 2003.10a
    • /
    • pp.216-223
    • /
    • 2003
  • In this paper, we introduce the software and hardware of the measuring system for performances of traction and braking in KTX(Korea Train eXpress). The measuring system focuses on the verification of the performance and acquisition of test data. The software controls the hardware of the measuring system, performs the analysis and calculation of measurement data and acts as interface between users and the hardware. For this purpose, three programs, such as a measuring program, a back-up program and a post-processing program, have developed.

  • PDF

A study on performance improvement of neural network using output probability of HMM (HMM의 출력확률을 이용한 신경회로망의 성능향상에 관한 연구)

  • Pyo Chang Soo;Kim Chang Keun;Hur Kang In
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.1 no.1
    • /
    • pp.1-6
    • /
    • 2000
  • In this paper, the hybrid system of HMM and neural network is proposed and show better recognition rate of the post-process procedure which minimizes the process error of recognition than that of HMM(Hidden Markov Model) only used. After the HMM training by training data, testing data that are not taken part in the training are sent to HMM. The output probability from HMM output by testing data is used for the training data of the neural network, post processor. After neural network training, the hybrid system is completed. This hybrid system makes the recognition rate improvement of about $4.5\%$ in MLP and about $2\%$ in RBFN and gives the solution to training time of conventional hybrid system and to decrease of the recognition rate due to the lack of training data in real-time speech recognition system.

  • PDF

Practical Algorithms on Lunar Reference Frame Transformations for Korea Pathfinder Lunar Orbiter Flight Operation

  • Song, Young-Joo;Lee, Donghun;Kim, Young-Rok;Bae, Jonghee;Park, Jae-ik;Hong, SeungBum;Kim, Dae-Kwan;Lee, Sang-Ryool
    • Journal of Astronomy and Space Sciences
    • /
    • v.38 no.3
    • /
    • pp.185-192
    • /
    • 2021
  • This technical paper deals the practical transformation algorithms between several lunar reference frames which will be used for Korea pathfinder lunar orbiter (KPLO) flight operation. Despite of various lunar reference frame definitions already exist, use of a common transformation algorithm while establishing lunar reference frame is very important for all members related to KPLO mission. This is because use of slight different parameters during frame transformation may result significant misleading while reprocessing data based on KPLO flight dynamics. Therefore, details of practical transformation algorithms for the KPLO mission specific lunar reference frames is presented with step by step implementation procedures. Examples of transformation results are also presented to support KPLO flight dynamics data user community which is expected to give practical guidelines while post processing the data as their needs. With this technical paper, common understandings of reference frames that will be used throughout not only the KPLO flight operation but also science data reprocessing can be established. It is expected to eliminate, or at least minimize, unnecessary confusion among all of the KPLO mission members including: Korea Aerospace Research Institute (KARI), National Aeronautics and Space Administration (NASA) as well as other organizations participating in KPLO payload development and operation, or further lunar science community world-wide who are interested in KPLO science data post processing.

Enhancing Medium-Range Forecast Accuracy of Temperature and Relative Humidity over South Korea using Minimum Continuous Ranked Probability Score (CRPS) Statistical Correction Technique (연속 순위 확률 점수를 활용한 통합 앙상블 모델에 대한 기온 및 습도 후처리 모델 개발)

  • Hyejeong Bok;Junsu Kim;Yeon-Hee Kim;Eunju Cho;Seungbum Kim
    • Atmosphere
    • /
    • v.34 no.1
    • /
    • pp.23-34
    • /
    • 2024
  • The Korea Meteorological Administration has improved medium-range weather forecasts by implementing post-processing methods to minimize numerical model errors. In this study, we employ a statistical correction technique known as the minimum continuous ranked probability score (CRPS) to refine medium-range forecast guidance. This technique quantifies the similarity between the predicted values and the observed cumulative distribution function of the Unified Model Ensemble Prediction System for Global (UM EPSG). We evaluated the performance of the medium-range forecast guidance for surface air temperature and relative humidity, noting significant enhancements in seasonal bias and root mean squared error compared to observations. Notably, compared to the existing the medium-range forecast guidance, temperature forecasts exhibit 17.5% improvement in summer and 21.5% improvement in winter. Humidity forecasts also show 12% improvement in summer and 23% improvement in winter. The results indicate that utilizing the minimum CRPS for medium-range forecast guidance provide more reliable and improved performance than UM EPSG.

Development of Registration Post-Processing Technology to Homogenize the Density of the Scan Data of Earthwork Sites (토공현장 스캔데이터 밀도 균일화를 위한 정합 후처리 기술 개발)

  • Kim, Yonggun;Park, Suyeul;Kim, Seok
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.42 no.5
    • /
    • pp.689-699
    • /
    • 2022
  • Recently, high productivity capabilities have been improved due to the application of advanced technologies in various industries, but in the construction industry, productivity improvements have been relatively low. Research on advanced technology for the construction industry is being conducted quickly to overcome the current low productivity. Among advanced technologies, 3D scan technology is widely used for creating 3D digital terrain models at construction sites. In particular, the 3D digital terrain model provides basic data for construction automation processes, such as earthwork machine guidance and control. The quality of the 3D digital terrain model has a lot of influence not only on the performance and acquisition environment of the 3D scanner, but also on the denoising, registration and merging process, which is a preprocessing process for creating a 3D digital terrain model after acquiring terrain scan data. Therefore, it is necessary to improve the terrain scan data processing performance. This study seeks to solve the problem of density inhomogeneity in terrain scan data that arises during the pre-processing step. The study suggests a 'pixel-based point cloud comparison algorithm' and verifies the performance of the algorithm using terrain scan data obtained at an actual earthwork site.

Semiautomated Analysis of Data from an Imaging Sonar for Fish Counting, Sizing, and Tracking in a Post-Processing Application

  • Kang, Myoung-Hee
    • Fisheries and Aquatic Sciences
    • /
    • v.14 no.3
    • /
    • pp.218-225
    • /
    • 2011
  • Dual frequency identification sonar (DIDSON) is an imaging sonar that has been used for numerous fisheries investigations in a diverse range of freshwater and marine environments. The main purpose of DIDSON is fish counting, fish sizing, and fish behavioral studies. DIDSON records video-quality data, so processing power for handling the vast amount of data with high speed is a priority. Therefore, a semiautomated analysis of DIDSON data for fish counting, sizing, and fish behavior in Echoview (fisheries acoustic data analysis software) was accomplished using testing data collected on the Rakaia River, New Zealand. Using this data, the methods and algorithms for background noise subtraction, image smoothing, target (fish) detection, and conversion to single targets were precisely illustrated. Verification by visualization identified the resulting targets. As a result, not only fish counts but also fish sizing information such as length, thickness, perimeter, compactness, and orientation were obtained. The alpha-beta fish tracking algorithm was employed to extract the speed, change in depth, and the distributed depth relating to fish behavior. Tail-beat pattern was depicted using the maximum intensity of all beams. This methodology can be used as a template and applied to data from BlueView two-dimensional imaging sonar.

A Study on the Voice Dialing using HMM and Post Processing of the Connected Digits (HMM과 연결 숫자음의 후처리를 이용한 음성 다이얼링에 관한 연구)

  • Yang, Jin-Woo;Kim, Soon-Hyob
    • The Journal of the Acoustical Society of Korea
    • /
    • v.14 no.5
    • /
    • pp.74-82
    • /
    • 1995
  • This paper is study on the voice dialing using HMM and post processing of the connected digits. HMM algorithm is widely used in the speech recognition with a good result. But, the maximum likelihood estimation of HMM(Hidden Markov Model) training in the speech recognition does not lead to values which maximize recognition rate. To solve the problem, we applied the post processing to segmental K-means procedure are in the recognition experiment. Korea connected digits are influenced by the prolongation more than English connected digits. To decrease the segmentation error in the level building algorithm some word models which can be produced by the prolongation are added. Some rules for the added models are applied to the recognition result and it is updated. The recognition system was implemented with DSP board having a TMS320C30 processor and IBM PC. The reference patterns were made by 3 male speakers in the noisy laboratory. The recognition experiment was performed for 21 sort of telephone number, 252 data. The recognition rate was $6\%$ in the speaker dependent, and $80.5\%$ in the speaker independent recognition test.

  • PDF

Global Positioning System and Strengthening of Geodetic Network of Nepal

  • Adhikary, Krishna Raj;Mahara, Shree Prakash
    • Proceedings of the KSRS Conference
    • /
    • 2003.11a
    • /
    • pp.955-958
    • /
    • 2003
  • Nepal is a country of mountains The higher order geodetic points were mostly established on the top of mountains and these points were used for the geodetic network extension. Lower order geodetic control networks were established at different times and used for the surveying and mapping activities of the country.. It has been found that the rate of convergence between north and south borders of Nepal to be 21${\pm}$2 mm each year and the rate translation of Kathmandu to 55${\pm}$3 mm/year to the plates. The most intense deformation in Nepal occurs along the belt of high mountains along its northern border res ulting in a strain contraction rate normal to the Himalayan Arc. This belt is approximately 40 km wide and extends into southern Tibet.( 13). Recently Survey Department of Nepal has lunched a program of strengthening the existing geodetic network of Nepal and re-observed the position of higher order geodetic points by using geodetic GPS receivers to evaluate their position and thus to define the precision of the control points once again. This paper describes the observation procedure and the adjustment results of the existing higher order control network of Nepal established in different time using different types of equipment and techniques; and highlights the observation procedure and the result obtained after the post processing of the GPS observation results. Attempt has been made to give the procedure and identify the methodology for the re observation of existing higher order geodetic points by using GPS receiver and post processing the observed data so that the existing higher order geodetic points are within the given accuracy standard.

  • PDF

Object Detection and Post-processing of LNGC CCS Scaffolding System using 3D Point Cloud Based on Deep Learning (딥러닝 기반 LNGC 화물창 스캐닝 점군 데이터의 비계 시스템 객체 탐지 및 후처리)

  • Lee, Dong-Kun;Ji, Seung-Hwan;Park, Bon-Yeong
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.58 no.5
    • /
    • pp.303-313
    • /
    • 2021
  • Recently, quality control of the Liquefied Natural Gas Carrier (LNGC) cargo hold and block-erection interference areas using 3D scanners have been performed, focusing on large shipyards and the international association of classification societies. In this study, as a part of the research on LNGC cargo hold quality management advancement, a study on deep-learning-based scaffolding system 3D point cloud object detection and post-processing were conducted using a LNGC cargo hold 3D point cloud. The scaffolding system point cloud object detection is based on the PointNet deep learning architecture that detects objects using point clouds, achieving 70% prediction accuracy. In addition, the possibility of improving the accuracy of object detection through parameter adjustment is confirmed, and the standard of Intersection over Union (IoU), an index for determining whether the object is the same, is achieved. To avoid the manual post-processing work, the object detection architecture allows automatic task performance and can achieve stable prediction accuracy through supplementation and improvement of learning data. In the future, an improved study will be conducted on not only the flat surface of the LNGC cargo hold but also complex systems such as curved surfaces, and the results are expected to be applicable in process progress automation rate monitoring and ship quality control.

Mobile Augmented Reality based CFD Simuation Post-Processor (모바일 증강현실 기술을 활용한 유체시뮬레이션 후처리기 연구)

  • Park, Sang-Jin;Kim, Myungil;Kim, Ho-yoon;Seo, Dong-Woo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.4
    • /
    • pp.523-533
    • /
    • 2019
  • The convergence of engineering and IT technology has brought many changes to the industry as well as academic research. In particular, computer simulation technology has evolved to a level that can accurately simulate actual physical phenomena and analyze them in real time. In this paper, we describe the CFD technology, which is mainly used in industry, and the post processor that uses the augmented reality which is emerging as the post-processing. Research on the visualization of fluid simulation results using AR technology is actively being carried out. However, due to the large size of the result data, it is limited to researches that are published in a desktop environment. Therefore, it is limitation that needs to be reviewed in actual space. In this paper, we discuss how to solve these problems. We analyze the fluid analysis results in the post-processing, and then perform optimizing data (more than 70%)to support operation in the mobile environment. In the visualization, lightweight data is used to perform real-time tracking using cloud computing, The analysis result is matched to the screen and visualized. This allows the user to review and analyze the fluid analysis results in an efficient and immersive manner in the various spaces where the simulation is performed.