• 제목/요약/키워드: positive displacement pump

검색결과 31건 처리시간 0.02초

다이아프램 정량펌프의 맥동감쇄 장치 (Pulsation Dampener for Diaphragm Metering Pump)

  • 윤승원
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2004년도 추계학술대회 논문집
    • /
    • pp.1143-1147
    • /
    • 2004
  • A mechanical type pulsation dampener for the diaphragm metering pump has been developed. The pulsation pressure is an inevitable phenomenon for the positive displacement pump such as cam operated or solenoid operated metering pump. The pulsation pressure of the metering pump could be the noise source and would be harmful for the piping system which delivers hydraulic fluid. Developed pulsation dampener consists of three coil springs which have different spring constant and height each other. Depending on pressure magnitude of the piping system, total hydraulic pressure on damping diaphragm which compresses coil springs will be varied. Force equilibrium of the pulsation dampener will be set by manual by adjusting the compressed coil spring height. During the discharge stroke, pulsation dampener stores potential energy that is released as the pumping diaphragm back to an initial position during the suction stroke.

  • PDF

원형케이싱이 극저비속도 원심펌프의 성능에 미치는 영향 (Influence of Circualr Casing on the Performance of Very Low Specific Speed Centrifugal Pump)

  • 최영도;카가와슈사쿠;쿠로카와준이치
    • 한국유체기계학회 논문집
    • /
    • 제9권1호
    • /
    • pp.32-39
    • /
    • 2006
  • Recently, according to the trend of small size in scale and high speed in rotation of turbomachinery, very low specific speed centrifugal pump is taking a growing interest because the pump is characterized by high head and low flow rate with convenience of manufacturing and maintenance compared with conventional positive displacement pump. However, the efficiency of the very low specific speed centrifugal pump drops rapidly with the decrease of specific speed. The purpose of this study is nor only to examine the influence of casing type on the performance of centrifugal pump in the range of very low specific speed but also to determine the proper casing type for the improvement of pump performance. The results show that circular casing is suitable for the centrifugal pump in the range of very low specific speed and the influence of impeller configuration on the pump performance is very small. Radial thrust in the circular and volute casings is considerably small in the range of very low specific speed.

Optimum Design on Lobe Shapes of Gerotor Oil Pump

  • Kim, J.H.;Kim, Chul;Chang, Y.J.
    • Journal of Mechanical Science and Technology
    • /
    • 제20권9호
    • /
    • pp.1390-1398
    • /
    • 2006
  • A gerotor pump is suitable for oil hydraulics of machine tools, automotive engines, compressors, constructions and other various applications. In particular the pump is an essential machine element that feeds lubricant oil in an automotive engine. The subject of this paper is the theoretical analysis of internal lobe pump whose the main components are the two rotors. Usually the outer one is characterized by lobes with a circular shape, while the inner rotor profile is determined as a conjugate to the other. For this reason the first topic presented here is the definition of the geometry of the rotors starting from the design parameters. The choice of these parameters is subject to some limitations in order to limit the pressure angle between the rotors. Now we will consider the design optimization. The first step is the determination of the instantaneous flow rate as a function of the design parameter. This allows us to calculate three performance indexes commonly used for the study of positive displacement pumps the flow rate irregularity, the specific flow rate, and the specific slipping. These indexes are used to optimize the design of the pump and to obtain the sets of optimum design parameter Results obtained from the analysis enable the designer and manufacturer of the oil pump to be more efficient in this field.

제로터 오일 펌프 로버형상에 관한 최적설계 (Optimum design on the lobe shapes of Gerotor Oil Pump)

  • 김재훈;김창호;김철
    • 한국정밀공학회지
    • /
    • 제23권4호
    • /
    • pp.124-131
    • /
    • 2006
  • A gerotor pump is suitable for oil hydraulics of machine tools, automotive engines, compressors, constructions and other various applications. Especially the pump is an essential machine element of an automotive engine to feed lubricant oil. The subject of this paper is the theoretical analysis of internal lobe pump whose the main components are the rotors: usually the outer one is characterized by lobes with circular shape, while the inner rotor profile is determined as conjugate to the other. For this reason the first topic presented here is the definition of the geometry of the rotors starting from the design parameters. The choice of these parameters is subject to some limitations in odor to limit the pressure angle between the rotors. Now we will consider the design optimization. The first step is the determination of the instantaneous flow rate as a function of the design parameter. This allows us to calculate three performance indexes commonly used far the study of positive displacement pumps: the flow rate irregularity, the specific flow rate, and the specific slipping. These indexes are used to optimize the design of the pump and to obtain the sets of optimum design parameter. Results obtained from the analysis enable the designer and manufacturer of oil pump to be more efficient in this field, and the system could serve as a valuable one for experts and as a dependable training aid for beginners.

A Study on the Correlation Analysis of the Present Status of Turbo Pumps Installed in Ships

  • Lee, Sang-Il;Kim, You-Taek
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제32권7호
    • /
    • pp.1051-1060
    • /
    • 2008
  • Now days, various types of ships are operated to transport both cargo and passengers all around the world. Most of the important auxiliary machinery installed in those ships is fluid machinery such as pumps, compressors, and fans. A large percentage of fluid machinery is pumps which are classified as turbo and positive displacement pumps. This paper analyzes only turbo pumps out of the two types. This thesis has two aims: (a) to analyze the present status of pumps installed in merchant and training ships and (b) to find the correlation among sea going pump kW, port pump kW, GE kW, ME MCR, number of pumps, ME kgf, pump kgf. Based on the ship's type, my paper seeks to find special characteristics as a result of analyzing head, flow rate, and kW. Moreover this paper analyzes and compares number of pumps, rpm of pumps, pump kW/ME MCR and pump kW/GE kW under the conditions of seagoing and berthing according to the ship's type. In conclusion, (1) For the exact comparison, information on the head, kW, flow rate, number of pumps by ship's type, the pump installation status of the Merchant Ships and Training Ships were tabulated and compared in this paper. (2) In order to qualify one ship as the delegate ship, several methods were used. The result of the examination indicates that the chosen ships could be justified as a suitable representation of ships of their own type. (3) The correlation of several values(total pump kW, port pump kW, GE kW, seagoing pump kW, pump weight, ME weight, ME MCR, number of pumps and ME kW) could be obtained.

파워스티어링용 유압펌프의 일체형 풀리 개발 (Development of Monolith Type Driving Pulley of Power Steering Hydraulic Pump)

  • 이춘태
    • 유공압시스템학회논문집
    • /
    • 제7권4호
    • /
    • pp.9-14
    • /
    • 2010
  • Most power steering systems work by using a hydraulic system to turn the vehicle's wheels. The pressure is usually provided by a hydraulic pump driven by the vehicle's engine. A double-acting hydraulic cylinder applies a force to the steering gear, which in turn applies a torque to the steering axis of the road wheels. The flow to the cylinder is controlled by valves operated by the steering wheel ; the more torque the driver applies to the steering wheel and the shaft it is attached to, the more fluid the valves allow through to the cylinder, and so the more force is applied to steer the wheels in the appropriate direction. Since the pumps employed are of the positive displacement type, the flow rate they deliver is directly proportional to the speed of the engine. And for a long time, the type of hydraulic pump pulley was boss welding type. But recently, monolith type driving pulley is widely used. Therefore in this paper we studied the safety of monolith type driving pulley to the extracting force and endurance by FEM analysis and experiments.

  • PDF

루츠형 중진공펌프 국산화 개발 (Development of Localized Roots Type Medium-Vacuum Pump)

  • 탁봉열;김병덕;양해경;한기영;이소아
    • 한국유체기계학회 논문집
    • /
    • 제14권3호
    • /
    • pp.23-27
    • /
    • 2011
  • Due to a roots type medium vacuum pump is operated in condition of $1{\sim}10^{-3}$ torr vacuum, it could be applied for production and process of industrial parts, such as precise processing, vaporization, enrichment, separation, casting, metaling, welding, transportation. Therefore, the demand of this pump is increasing nowadays in our industrial markets of semiconductor, electric, electronic, automobile, material, environmental and transporting industries. However, the pumps are almost imported, because the domestic pumps are inferior in fields of vacuum range as under $10^{-1}$torr, relevant techniques(design, fabrication, casting, test, etc.) to the imported ones. In this study, essential parts of the development pump are designed with using of CFD and 3D decodes, FEM for analysing strength and deformation, generated heat, vibration and noise control, and are casted with using of mechanochemistry techniques for decreasing of weights, increasing of heat resistances and abrasion durability of materials for pump caing and impellers especially. Besides, in order to achieve ultimate vacuum around $10^{-3}$torr, this pump is composed of 6 stages, among which 1st stage is operated separately from remained stages. Additionally, a test rig for prototype pumps(300$m^3/h$ and 2,500$m^3/h$) is designed and procured as to apply for multi-staged rootz type vacuum pump, with modification of the test method recommended by KS B 6314 "Positive-displacement oil-sealed rotary vacuum pumps".

Implantable Drug Delivery Systems-Design Process

  • Vincent, Croquet;Benolt, Raucent;Onori, Mauro
    • International Journal of Precision Engineering and Manufacturing
    • /
    • 제7권4호
    • /
    • pp.40-46
    • /
    • 2006
  • The market of programmable implantable pumps has bound to a monopolistic situation, inducing high device costs, thus making them inaccessible to most patients. Micro-mechanical and medical innovations allow improved performances by reducing the dimensions. This affects the consumption and weight, and, by reducing the number of parts, the cost is also affected. This paper presents the procedure followed to design an innovative implantable drug delivery system. This drug delivery system consists of a low flow pump which shall be implanted in the human body to relieve pain. In comparison to classical known solutions, this pump presents many advantages of high interest in both medical and mechanical terms. The first section of the article describes the specifications which would characterize a perfect delivery system from every points of view. This concerns shape, medication, flow, autonomy, biocompatibility, security and sterilization ability. Afterwards, an overview of existing systems is proposed in a decisional tree. Positive displacement motorized pumps are classified into three main groups: the continuous movement group, the fractioned translation group and the alternative movement group. These systems are described and the different problems which are specific to these mechanisms are presented. Since none of them fully satisfy the specifications, an innovation is justified.. The decisional tree is therefore extended by adding new principles: fractioned refilling and fractioned injection within the fractioned translation movement group, spider guiding system within the alternative translation movement group, rotational bearing guided device and notch hinge guided device in the alternative rotation movement group.

회전용적형펌프의 소방장비 적용에 관한 연구 (A study on the applications of firefighting equipment in use of Rotary Positive Displacement Pump)

  • 김유식;노성왕;박종원;주종길
    • 한국화재소방학회:학술대회논문집
    • /
    • 한국화재소방학회 2011년도 추계학술논문발표회 논문집
    • /
    • pp.71-75
    • /
    • 2011
  • 현재 소방장비에 적용되어지는 소방펌프를 살펴보면 원심펌프가 주류를 이루고 있으며 폼 약제 이송 장치와 같은 특수한 장비에 용적형펌프가 일부 사용되고 있다. 또한 국내 소방펌프의 형식승인 및 검정기술기준 또한 원심펌프 위주로 되어 있어 원심펌프 이외의 펌프를 소방장비에 적용하기에는 현실적으로 많은 어려움이 있는 실정이다. 따라서 본 연구는 고압으로 대유량 방수가 가능하도록 개발된 회전용적형펌프의 방수성능을 기존의 원심펌프와 비교 테스트하고 그 결과를 분석하여 회전용적형펌프의 소방장비에 적용 가능성을 제시하고자 한다.

  • PDF

Development of Pressurizer Level Control System using Centrifugal Charging Pump and Letdown Orifices for YGN 5&6

  • Jeong, Won-Sang;Shon, Suk-Whun;Seo, Ho-Taek;Seo, Jong-Tae;Lee, Sang-Keun
    • 한국원자력학회:학술대회논문집
    • /
    • 한국원자력학회 1996년도 춘계학술발표회논문집(1)
    • /
    • pp.484-490
    • /
    • 1996
  • The Pressurizer Level Control System (PLCS) logic for YGN 5&6 was developed to incorporate the design changes on the Chemical and Volume Control System (CVCS). The YGN 5&6 CVCS uses the centrifugal charging pumps and letdown orifices replacing the positive displacement pumps and letdown control valves in the YGN 3&4 and UCN 3&4. The purpose of this study is to develop new PLCS as well as validate newly developed control logic and its implementation method in the simulation computer code. The analysis results show that the new PLCS has adequate ability to control the pressurizer level in response to the design bases events, and the simulation computer code is useful for YGN 5&6 NSSS design code.

  • PDF