• Title/Summary/Keyword: position estimation,

Search Result 1,614, Processing Time 0.03 seconds

A Study on the Signal Processing Method for the Hall Sensorless Position Control of ETC Control System using a BLDC Motor (ETC 구동용 BLDC 제어시스템의 홀센서리스 위치제어를 위한 신호처리기법에 관한 연구)

  • Lee, Sang-Hun;Lee, Seon-Bong;Park, Cheol-Hu
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.16 no.5
    • /
    • pp.92-99
    • /
    • 2008
  • This paper describes an signal processing method for the hall sensorless position control of ETC control system using a BLDC motor. The proposed ETC control system, which is mainly consisted of a BLDC motor, a throttle plate, a return spring and reduction gear, has a position sensor with an analog voltage output on the throttle valve instead of BLDC motor for detecting rotor position of motor. So the additional commutation information is necessarily needed to control the mentioned ETC module. In order to estimate and determine the commutation state, it is proposed to properly manipulate the resolution of A/D converter considering the mechanical parameter, that is, the number of motor slot and the ratio of reduction gear. Through this method, the estimation of commutation state for operating the system is possible and the discrete signal for commutation is stably obtained. The validity of the method is examined through the experimental results.

A Study on Object Tracking for Autonomous Mobile Robot using Vision Information (비젼 정보를 이용한 이동 자율로봇의 물체 추적에 관한 연구)

  • Kang, Jin-Gu;Lee, Jang-Myung
    • Journal of the Korea Society of Computer and Information
    • /
    • v.13 no.2
    • /
    • pp.235-242
    • /
    • 2008
  • An Autonomous mobile robot is a very useful system to achieve various tasks in dangerous environment, because it has the higher performance than a fixed base manipulator in terms of its operational workspace size as well as efficiency. A method for estimating the position of an object in the Cartesian coordinate system based upon the geometrical relationship between the image captured by 2-DOF active camera mounted on mobile robot and the real object, is proposed. With this position estimation, a method of determining an optimal path for the autonomous mobile robot from the current position to the position of object estimated by the image information using homogeneous matrices. Finally, the corresponding joint parameters to make the desired displacement are calculated to capture the object through the control of a mobile robot. The effectiveness of proposed method is demonstrated by the simulation and real experiments using the autonomous mobile robot.

  • PDF

Rotor Initial Position Estimation Based on sDFT for Electrically Excited Synchronous Motors

  • Yuan, Qing-Qing;Wu, Xiao-Jie;Dai, Peng
    • Journal of Power Electronics
    • /
    • v.14 no.3
    • /
    • pp.564-571
    • /
    • 2014
  • Rotor initial position is an important factor affecting the control performance of electrically excited synchronous motors. This study presents a novel method for estimating rotor initial position based on sliding discrete Fourier transform (sDFT). By injecting an ac excitation into the rotor winding, an induced voltage is generated in stator windings. Through this voltage, the stator flux can be obtained using a pure integral voltage model. Considering the influence from a dc bias and an integral initial value, we adopt the sDFT to extract the fundamental flux component. A quadrant identification model is designed to realize the accurate estimation of the rotor initial position. The sDFT and high-pass filter, DFT, are compared in detail, and the contrast between dc excitation and ac injection is determined. Simulation and experimental results verify that this type of novel method can eliminate the influence of dc bias and other adverse factors, as well as provide a basis for the control of motor drives.

Position Sensorless Vector control of Permanent Magnet Synchronous Motor (영구자석형 동기전동기의 위치 추정에 의한 벡터 제어)

  • Park, Min-Ho;Lee, Hong-Hee;Chun, Tae-Won
    • Proceedings of the KIEE Conference
    • /
    • 1988.11a
    • /
    • pp.310-313
    • /
    • 1988
  • It is an important thing to detect the Pole position for vector control of permanent magnet synchronous motor. In this paper, traditional position sensor is removed with the estimation of the pole position by using adaptive identification. Also, the proposed algorithm is simulated and the results are very good performance.

  • PDF

The Effect of the Estimation Strategy on Placing Decimal Point in Multiplication and Division of Decimals (어림하기를 통한 소수점 찍기가 소수의 곱셈과 나눗셈에 미치는 효과)

  • Lee, Youn-Mee;Park, Sung-Sun
    • Journal of Elementary Mathematics Education in Korea
    • /
    • v.15 no.1
    • /
    • pp.1-18
    • /
    • 2011
  • The purpose of this study was to investigate the effects of estimation strategy on placing decimal point in multiplication and division of decimals. To examine the effects of improving calculation ability and reducing decimal point errors with this estimation strategy, the experimental research on operation with decimal was conducted. The operation group conducted the decimal point estimation strategy for operating decimal fractions, whereas the control group used the traditional method with the same test paper. The results obtained in this research are as follows; First, the estimation strategy with understanding a basic meaning of decimals was much more effective in calculation improvement than the algorithm study with repeated calculations. Second, the mathematical problem solving ability - including the whole procedure for solving the mathematical question - had no effects since the decimal point estimation strategy is normally performed after finishing problem solving strategy. Third, the estimation strategy showed positive effects on the calculation ability. Th Memorizing algorithm doesn't last long to the students, but the estimation strategy based on the concept and the position of decimal fraction affects continually to the students. Finally, the estimation strategy assisted the students in understanding the connection of the position of decimal points in the product with that in the multiplicand or the multiplier. Moreover, this strategy suggested to the students that there was relation between the placing decimal point of the quotient and that of the dividend.

  • PDF

Terrain Slope Estimation Methods Using the Least Squares Approach for Terrain Referenced Navigation

  • Mok, Sung-Hoon;Bang, Hyochoong
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.14 no.1
    • /
    • pp.85-90
    • /
    • 2013
  • This paper presents a study on terrain referenced navigation (TRN). The extended Kalman filter (EKF) is adopted as a filter method. A Jacobian matrix of measurement equations in the EKF consists of terrain slope terms, and accurate slope estimation is essential to keep filter stability. Two slope estimation methods are proposed in this study. Both methods are based on the least-squares approach. One is planar regression searching the best plane, in the least-squares sense, representing the terrain map over the region, determined by position error covariance. It is shown that the method could provide a more accurate solution than the previously developed linear regression approach, which uses lines rather than a plane in the least-squares measure. The other proposed method is weighted planar regression. Additional weights formed by Gaussian pdf are multiplied in the planar regression, to reflect the actual pdf of the position estimate of EKF. Monte Carlo simulations are conducted, to compare the performance between the previous and two proposed methods, by analyzing the filter properties of divergence probability and convergence speed. It is expected that one of the slope estimation methods could be implemented, after determining which of the filter properties is more significant at each mission.

Absolute Depth Estimation Based on a Sharpness-assessment Algorithm for a Camera with an Asymmetric Aperture

  • Kim, Beomjun;Heo, Daerak;Moon, Woonchan;Hahn, Joonku
    • Current Optics and Photonics
    • /
    • v.5 no.5
    • /
    • pp.514-523
    • /
    • 2021
  • Methods for absolute depth estimation have received lots of interest, and most algorithms are concerned about how to minimize the difference between an input defocused image and an estimated defocused image. These approaches may increase the complexity of the algorithms to calculate the defocused image from the estimation of the focused image. In this paper, we present a new method to recover depth of scene based on a sharpness-assessment algorithm. The proposed algorithm estimates the depth of scene by calculating the sharpness of deconvolved images with a specific point-spread function (PSF). While most depth estimation studies evaluate depth of the scene only behind a focal plane, the proposed method evaluates a broad depth range both nearer and farther than the focal plane. This is accomplished using an asymmetric aperture, so the PSF at a position nearer than the focal plane is different from that at a position farther than the focal plane. From the image taken with a focal plane of 160 cm, the depth of object over the broad range from 60 to 350 cm is estimated at 10 cm resolution. With an asymmetric aperture, we demonstrate the feasibility of the sharpness-assessment algorithm to recover absolute depth of scene from a single defocused image.

Position Measurements of Moving Object in Cartesian Coordinate (직교좌표에서 이동물체의 위치측정)

  • 이용중;노재희;이양범
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.10 no.1
    • /
    • pp.36-42
    • /
    • 2001
  • In this paper, PSD(Position Sensitive Detector) sensor system that estimates position for moving objects in 2D plane is developed. PSD sensor is used to measure the position the position of and incidence light in real-time. To get the position of light source of moving target, a new parameter calibration algorithm and neural network technique are proposed and applied. Real-time position measurements of the mobile robot with light source is examined to validate the proposed method. It is shown that the proposed technique provides accurate position estimation of the moving object.

  • PDF

A Calibration Technique and its Error Analysis for the Position of Seabed Sonar Target (해저고정 소나표적의 위치교정기법과 오차해석)

  • 이상국;이용곤
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.6 no.3
    • /
    • pp.15-21
    • /
    • 2003
  • This paper contains a precise calibration technique for the position of seabed acoustic target and theoretical error analysis of calibration results. The target is deployed on seabed as a standalone transponder. The purpose of target is performing accuracy test for active sonar as well as position calibration itself. For the position calibration, relative range between target and test vessel should be measured using target's transponder function. The relative range data combined with vessel position can be converted into a estimated position of target by the application of nonlinear LSE method. The error analysis of position calibration was divided into two stages. One is for relative range estimator and the other for target position estimator. Numerical simulations for position calibration showed good matching between results and developed CRLB.

Position estimation and navigation control of mobile robot using mono vision (단일 카메라를 이용한 이동 로봇의 위치 추정과 주행 제어)

  • Lee, Ki-Chul;Lee, Sung-Ryul;Park, Min-Yong;Kim, Hyun-Tai;Kho, Jae-Won
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.5 no.5
    • /
    • pp.529-539
    • /
    • 1999
  • This paper suggests a new image analysis method and indoor navigation control algorithm of mobile robots using a mono vision system. In order to reduce the positional uncertainty which is generated as the robot travels around the workspace, we propose a new visual landmark recognition algorithm with 2-D graph world model which describes the workspace as only a rough plane figure. The suggested algorithm is implemented to our mobile robot and experimented in a real corridor using extended Kalman filter. The validity and performance of the proposed algorithm was verified by showing that the trajectory deviation error was maintained under 0.075m and the position estimation error was sustained under 0.05m in the resultant trajectory of the navigation.

  • PDF