• 제목/요약/키워드: position error compensation algorithm

검색결과 84건 처리시간 0.022초

위치 오차 보상을 통한 전동식 슈퍼차저 모터의 모델 기반 센서리스 응답성 개선 (Improved Responsiveness of Model-Based Sensorless Control for Electric-Supercharger Motor using an Position Error Compensation)

  • 박귀열;황요한;허남;이주
    • 전력전자학회논문지
    • /
    • 제24권1호
    • /
    • pp.9-15
    • /
    • 2019
  • Sensorless electric superchargers have recently been actively developed to provide a large amount of oxygen to engines in order assist the combustion process for miniaturizing the engines and improving fuel efficiency. The model-based sensorless method for surface-mounted permanent magnet synchronous motors has a disadvantage in that the system may become unstable due to parameter variations in low-speed operation and the rapid-acceleration section. An electric supercharger requires fast response to improve the engine response delay, such as the turbocharger turbo-rack. Therefore, the responsiveness must be improved to use the model-based sensorless system. The position compensation algorithm designed in this study is controlled by converting the position error into the beta, which is the angle formed by the d-axis and the stator current during sudden speed change. In this study, we improved the response of the model-based sensorless system through the algorithm and verified the algorithm validity by applying the algorithm to an actual dual-motor supercharger.

Signal Compensation for Analog Rotor Position Errors due to Nonideal Sinusoidal Encoder Signals

  • Hwang, Seon-Hwan;Kim, Dong-Youn;Kim, Jang-Mok;Jang, Do-Hyun
    • Journal of Power Electronics
    • /
    • 제14권1호
    • /
    • pp.82-91
    • /
    • 2014
  • This paper proposes a compensation algorithm for the analog rotor position errors caused by nonideal sinusoidal encoder output signals including offset and gain errors. In order to achieve a much higher resolution, position sensors such as resolvers or incremental encoders can be replaced by sinusoidal encoders. In practice, however, the periodic ripples related to the analog rotor position are generated by the offset and gain errors between the sine and cosine output signals of sinusoidal encoders. In this paper, the effects of offset and gain errors are easily analyzed by applying the concept of a rotating coordinate system based on the dq transformation method. The synchronous d-axis signal component is used directly to detect the amplitude of the offset and gain errors for the proposed compensator. As a result, the offset and gain errors can be well corrected by three integrators located on the synchronous d-axis component. In addition, the proposed algorithm does not require any additional hardware and can be easily implemented by a simple integral operation. The effectiveness of the proposed algorithm is verified through several experimental results.

AHRS을 이용한 자세결정과 Heading 산출을 위한 연구 (The Study for attitude determination and heading production using AHRS)

  • 백기석;박운용;차성렬;홍순헌
    • 한국측량학회:학술대회논문집
    • /
    • 한국측량학회 2004년도 춘계학술발표회논문집
    • /
    • pp.59-64
    • /
    • 2004
  • In this paper, the error compensation method of the low-cost IMU is proposed. In general, the position and attitude error calculated by accelerometers and gyros grows with time. Therefore the additional information is required to compensate the drift. The attitude angles can be bound accelerometer mixing algorithm and the heading angle can be aided by single antenna GPS velocity. The Kalman filter is used for error compensation. The result is verified by comparing with the attitude calculated by Attitude Heading Reference System with Micro Electro Mechanical System for a basis

  • PDF

선루프용 BLDC 전동기 홀센서 위치 오차 보상 기법 (Position Error Compensation Method of Hall Sensors for Sunroof System using BLDC Motor)

  • 안정열
    • 전기학회논문지P
    • /
    • 제66권2호
    • /
    • pp.53-57
    • /
    • 2017
  • This papers propose a Hall-effect sensors position error compensation method in a sunroof system using a BLDC motor with a low-cost MCU. If the BLDC motor is controlled with this wrong position, the torque ripple and operating current can be increased and the average torque also decreases. Generally, sunroof system has characteristics that operate at constant load for several seconds. It is possible to find the minimum operating current value while changing the position of the Hall-effect sensor during the sunroof operation by using these characteristics. Therefore, propose a method to change the Hall-effect sensor position and find the minimum current value. The validity of the proposed algorithm is verified through experiments.

GPS/IMU 결합에 의한 자세 및 동적 위치 결정 분석 (Attitude and Dynamics Position Determination Analysis with the combined GPS/IMU)

  • 백기석;박운용;이종출;차성렬
    • 한국측량학회:학술대회논문집
    • /
    • 한국측량학회 2004년도 추계학술발표회 논문집
    • /
    • pp.117-121
    • /
    • 2004
  • In this paper, the error compensation method of the low-cost IMU is proposed. In general, the position and attitude error calculated by accelerometers and gyros grows with time. Therefore the additional information is required to compensate the drift. The attitude angles can be bound accelerometer mixing algorithm and the heading angle can be aided by single antenna GPS velocity. The Kalman filter is used for error compensation. The result is verified by comparing with the attitude calculated and dynamics position determination by Attitude Heading Reference System with Micro Electro Mechanical System for a basis

  • PDF

Development of an Automatic Label Attaching System Using a Robot Vision in Variable Situation

  • Lee, Young-Jung
    • 한국공작기계학회:학술대회논문집
    • /
    • 한국공작기계학회 2004년도 춘계학술대회 논문집
    • /
    • pp.225-230
    • /
    • 2004
  • A cold & hot rolling coil production line of iron nill consists of a kind of coherent automatic process, but an automatic labelling process still had technical difficulties in the automation of its process. The reason for difficulties in building an automatic process is that quantitative data for each rolled coil from every shipping is not easy to receive from the previous process. it is not possible to apply for a general and simple purpose robot that is actually worked through a taught position to the process because the size and direction of the coi1 has differed on every shipping. From these reasons. we introduce a robot vision system to accept an expected variable situation and to ensure the stability and flexibility of the process. This paper examines a study applied for similar cases and finds the position and direction of relied coil using the moment invariant algorithm proposed by Hu. In addition. the camera calibration and position error compensation algorithm is applied by the analysis of the relationship of transition in a space coordinate system. The construction of a robot vision system proposed by this paper is a more intellectual system than that of the automatic labelling system. which is already used to the Daihen steel nill of NEW JAPAN steel mill co. Ltd in Japan, and shows a better independent operation in the field of production.

  • PDF

BLE 비콘 시스템에서 측위 정밀도 향상을 위한 위치 오차 보정 알고리즘 (Position Error Correction Algorithm for Improvement of Positioning Accuracy in BLE Beacon Systems)

  • 정준희;황유민;홍승관;김태우;김진영
    • 한국위성정보통신학회논문지
    • /
    • 제11권4호
    • /
    • pp.63-67
    • /
    • 2016
  • 최근에 BLE 비콘의 낮은 배터리 소모와 저렴한 인프라 비용의 특징 때문에 실내 정밀 측위 시스템에 폭넓게 활용되고 있다. 하지만 기존의 BLE 비콘 기반 실내 측위 알고리즘은 사용자의 이동 속도 변화에 따라 유동적인 위치 오차 보정이 어렵다. 따라서 본 논문은 BLE 비콘을 활용한 Bounced cancellation 및 최소 거리 유지 알고리즘과 방향벡터를 이용한 측위오차 보정 기법을 결합한 위치 오차 보정 알고리즘을 제안했다. 본 논문의 실험 결과는 제안된 알고리즘이 기존의 실내 측위 알고리즘에 비해 유저 이동속도가 변화함에도 우수한 측위 성능을 보장하며 개선된 위치 오차 보정 성능을 나타냈다.

통계적 오차보상 기법을 이용한 센서 네트워크에서의 RDOA 측정치 기반의 표적측위 (Stochastic Error Compensation Method for RDOA Based Target Localization in Sensor Network)

  • 최가형;나원상;박진배;윤태성
    • 전기학회논문지
    • /
    • 제59권10호
    • /
    • pp.1874-1881
    • /
    • 2010
  • A recursive linear stochastic error compensation algorithm is newly proposed for target localization in sensor network which provides range difference of arrival(RDOA) measurements. Target localization with RDOA is a well-known nonlinear estimation problem. Since it can not solve with a closed-form solution, the numerical methods sensitive to initial guess are often used before. As an alternative solution, a pseudo-linear estimation scheme has been used but the auto-correlation of measurement noise still causes unacceptable estimation errors under low SNR conditions. To overcome these problems, a stochastic error compensation method is applied for the target localization problem under the assumption that a priori stochastic information of RDOA measurement noise is available. Apart from the existing methods, the proposed linear target localization scheme can recursively compute the target position estimate which converges to true position in probability. In addition, it is remarked that the suggested algorithm has a structural reconciliation with the existing one such as linear correction least squares(LCLS) estimator. Through the computer simulations, it is demonstrated that the proposed method shows better performance than the LCLS method and guarantees fast and reliable convergence characteristic compared to the nonlinear method.

실제 eLoran TOA 측정치를 이용한 GPS Aided 오차 보상 기법과 항법 알고리즘의 검증 (Verification of GPS Aided Error Compensation Method and Navigation Algorithm with Raw eLoran Measurements)

  • 송세필;최헌호;김영백;이상정;박찬식
    • 제어로봇시스템학회논문지
    • /
    • 제17권9호
    • /
    • pp.941-946
    • /
    • 2011
  • The Loran-C, a radio navigation system based on TDOA measurements is enhanced to eLoran using TOA measurements instead of TDOA measurements. Many error factors such as PF, SF, ASF, clock errors and unknown biases are included in eLoran TOA measurements. Because these error factors can cause failure in eLoran navigation algorithm, these errors must be compensated for high accuracy eLoran navigation results. Compensation of ASF and unknown biases are difficult to calculate, while the others such as PF and SF are relatively easy to eliminate. In order to compensate all errors in eLoran TOA measurements, a simple GPS aided bias compensation method is suggested in this paper. This method calculates the bias as the difference of TOA measurement and the range between eLoran transmitters and the receiver whose position is determined using GPS. The real data measured in Europe are used for verification of suggested method and navigation algorithm.

유전자 알고리즘 기반의 수동측거소나 부배열 위치오차 추정 (Position error estimation of sub-array in passive ranging sonar based on a genetic algorithm)

  • 엄민정;김도영;박규태;신기철;오세현
    • 한국음향학회지
    • /
    • 제38권6호
    • /
    • pp.630-636
    • /
    • 2019
  • 수동측거소나는 잠수함 플랫폼의 좌/우현에 각각 3개의 부배열로 구성된 수동소나의 한 종류로서 표적을 탐지하고 방위와 거리를 산출하는 특성을 갖는다. 방위와 거리 산출에는 물리적인 부배열 위치로 인하여 발생되는 시간지연과 삼각측량 기법이 활용된다. 이러한 기법에는 부배열의 정확한 위치정보가 요구되며 부배열의 위치정보가 부정확할 경우 방위와 거리정확도 성능이 저하되는 한계가 있다. 특히 하나의 시간지연을 사용하는 방위보다 두 개의 시간지연 값을 사용하는 거리 정확도 성능에 미치는 영향이 더 크다. 이를 개선하기 위하여 부배열의 위치 오차 추정 및 오차보상에 대한 연구가 필요하다. 본 논문에서는 최적화 탐색 기법인 유전자 알고리즘을 바탕으로 부배열 위치오차를 추정하며, 위치오차로 인한 시간지연 오차 값을 보상하여 거리정확도 성능 개선 방법을 제시하고자 한다. 또한 해상시험 데이터를 이용하여 제시한 알고리즘과 성능을 검증하고자 한다.