• Title/Summary/Keyword: pose estimation

Search Result 388, Processing Time 0.025 seconds

Dimensional Analysis for the Front Chassis Module in the Auto Industry (자동차 프런트 샤시 모듈의 좌표 해석)

  • 이동목;양승한
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.21 no.8
    • /
    • pp.50-56
    • /
    • 2004
  • The directional ability of an automobile has an influence on driver directly, and hence it must be given most priority. Alignment factors of automobile such as the camber, caster and toe directly affect the directional ability of a vehicle. The above mentioned factors are determined by the pose of interlinks in the assembly of an automobile front chassis module. Measuring the position of center point of ball joints in the front lower arm is very difficult. A method to determine this position is suggested in this paper. Pose estimation for front chassis module and dimensional evaluation to find the rotational characteristics of front lower arm were developed based on fundamental geometric techniques. To interpret the inspection data obtained for front chassis module, 3-D best fit method is needed. The best fit method determines the relationship between the nominal design coordinate system and the corresponding feature coordinate system. The least squares method based on singular value decomposition is used in this paper.

Pose Estimation of Underwater Robot using Vision System (비젼시스템을 이용한 수중로봇의 위치추정)

  • Kim, Jin-Seok;Kim, Heung-Soo;Cho, Byung-Hak;Kim, Joon-Hong;Shin, Chang-Hoon;Kim, Seok-Gon
    • Proceedings of the KIEE Conference
    • /
    • 2001.11c
    • /
    • pp.292-296
    • /
    • 2001
  • Nuclear regulation requires a periodic visual test for inside structures of reactor to guarantee safe operation of nuclear power plant. However, existing visual test, which is proceeded manually, needs lots of time and labor. Even more, test workers should be exposed in radioactive environment during the test. An underwater robot system has being studied for more efficient and safer test. The position and pose estimation are important issue for the movement control of the robot. An algorithm was presented in this paper, which estimate the location and pose of the underwater robot clearly using vision system.

  • PDF

Human Pose-based Labor Productivity Measurement Model

  • Lee, Byoungmin;Yoon, Sebeen;Jo, Soun;Kim, Taehoon;Ock, Jongho
    • International conference on construction engineering and project management
    • /
    • 2022.06a
    • /
    • pp.839-846
    • /
    • 2022
  • Traditionally, the construction industry has shown low labor productivity and productivity growth. To improve labor productivity, it must first be accurately measured. The existing method uses work-sampling techniques through observation of workers' activities at certain time intervals on site. However, a disadvantage of this method is that the results may differ depending on the observer's judgment and may be inaccurate in the case of a large number of missed scenarios. Therefore, this study proposes a model to automate labor productivity measurement by monitoring workers' actions using a deep learning-based pose estimation method. The results are expected to contribute to productivity improvement on construction sites.

  • PDF

Nozzle Swing Angle Measurement Involving Weighted Uncertainty of Feature Points Based on Rotation Parameters

  • Liang Wei;Ju Huo;Chen Cai
    • Current Optics and Photonics
    • /
    • v.8 no.3
    • /
    • pp.300-306
    • /
    • 2024
  • To solve the nozzle swing angle non-contact measurement problem, we present a nozzle pose estimation algorithm involving weighted measurement uncertainty based on rotation parameters. Firstly, the instantaneous axis of the rocket nozzle is constructed and used to model the pivot point and the nozzle coordinate system. Then, the rotation matrix and translation vector are parameterized by Cayley-Gibbs-Rodriguez parameters, and the novel object space collinearity error equation involving weighted measurement uncertainty of feature points is constructed. The nozzle pose is obtained at this step by the Gröbner basis method. Finally, the swing angle is calculated based on the conversion relationship between the nozzle static coordinate system and the nozzle dynamic coordinate system. Experimental results prove the high accuracy and robustness of the proposed method. In the space of 1.5 m × 1.5 m × 1.5 m, the maximum angle error of nozzle swing is 0.103°.

Pose Estimation Techniques for Humanoid Characters in FPS Gaming Environments (인간 캐릭터 포즈 식별: FPS 게임에서의 포즈 추정 기법)

  • Youjung Han;Minseop Lee;Minsu Cha;Jiyoung Woo
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2024.01a
    • /
    • pp.29-30
    • /
    • 2024
  • 본 논문은 Krafton의 PUBG: BATTLEGROUNDS 게임에서 플레이어 분류를 목표로 하며, 포즈 추정기술을 사용하여 일반 플레이어와 봇을 구분한다. 이는 게임에서 직접 수집한 비디오 데이터를 기반으로 하며, 다음과 같은 두 가지 접근 방식을 제안한다. 첫 번째 방법은 동작 시퀀스 분석을 통해, 사용자의 특정동작 패턴을 식별하고 로지스틱 회귀 모델을 활용해 사용자 유형을 분류한다. 두 번째 방법은 YOLO-pose 모델을 사용하여 비디오 데이터에서 키포인트를 추출하고, 이를 LSTM 모델에 적용하여 프레임별로 사용자의 유형을 분류한다. 이러한 이중 접근 방식은 게임의 공정성과 사용자 경험을 향상시키는 새로운 도구를 제공하며, 보다 안전한 게임 환경에 기여할 수 있다. 이 연구는 게임 산업뿐만 아니라 보안 및 모니터링 분야에서도 동작 분석에 대한 혁신적인 접근 방식으로 활용될 잠재력을 가지고 있다.

  • PDF

Head Pose Estimation with Accumulated Historgram and Random Forest (누적 히스토그램과 랜덤 포레스트를 이용한 머리방향 추정)

  • Mun, Sung Hee;Lee, Chil woo
    • Smart Media Journal
    • /
    • v.5 no.1
    • /
    • pp.38-43
    • /
    • 2016
  • As smart environment is spread out in our living environments, the needs of an approach related to Human Computer Interaction(HCI) is increases. One of them is head pose estimation. it related to gaze direction estimation, since head has a close relationship to eyes by the body structure. It's a key factor in identifying person's intention or the target of interest, hence it is an essential research in HCI. In this paper, we propose an approach for head pose estimation with pre-defined several directions by random forest classifier. We use canny edge detector to extract feature of the different facial image which is obtained between input image and averaged frontal facial image for extraction of rotation information of input image. From that, we obtain the binary edge image, and make two accumulated histograms which are obtained by counting the number of pixel which has non-zero value along each of the axes. This two accumulated histograms are used to feature of the facial image. We use CAS-PEAL-R1 Dataset for training and testing to random forest classifier, and obtained 80.6% accuracy.

Attitude Estimation of a Foot for Biped Robots Using Multiple Sensors (다중 센서 융합을 통한 이족 보행 로봇 발의 자세 추정)

  • Ryu, Je-Hun;You, Bun-Jae;Park, Min-Yong;Kim, Do-Yoon;Choi, Young-Jin;Oh, Sang-Rok
    • Proceedings of the KIEE Conference
    • /
    • 2004.11c
    • /
    • pp.586-588
    • /
    • 2004
  • Although stable control algorithm has been implemented to the biped robot, the stability is not guaranteed because of encoder errors and/or rigid body elastics. Hence precise body pose estimation is required for more natural and long term walk. Specially pelvis sloping by gravity or uneven ground on landing place are most critical reason for undulated motion. In order to overcome these difficulties an estimation system for foot position and orientation using PSD sensors and Gyro sensors is proposed along with calibration algorithm and experimental verification.

  • PDF

The Estimation of the Transform Parameters Using the Pattern Matching with 2D Images (2차원 영상에서 패턴매칭을 이용한 3차원 물체의 변환정보 추정)

  • 조택동;이호영;양상민
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.21 no.7
    • /
    • pp.83-91
    • /
    • 2004
  • The determination of camera position and orientation from known correspondences of 3D reference points and their images is known as pose estimation in computer vision or space resection in photogrammetry. This paper discusses estimation of transform parameters using the pattern matching method with 2D images only. In general, the 3D reference points or lines are needed to find out the 3D transform parameters, but this method is applied without the 3D reference points or lines. It uses only two images to find out the transform parameters between two image. The algorithm is simulated using Visual C++ on Windows 98.

Lightening of Human Pose Estimation Algorithm Using MobileViT and Transfer Learning

  • Kunwoo Kim;Jonghyun Hong;Jonghyuk Park
    • Journal of the Korea Society of Computer and Information
    • /
    • v.28 no.9
    • /
    • pp.17-25
    • /
    • 2023
  • In this paper, we propose a model that can perform human pose estimation through a MobileViT-based model with fewer parameters and faster estimation. The based model demonstrates lightweight performance through a structure that combines features of convolutional neural networks with features of Vision Transformer. Transformer, which is a major mechanism in this study, has become more influential as its based models perform better than convolutional neural network-based models in the field of computer vision. Similarly, in the field of human pose estimation, Vision Transformer-based ViTPose maintains the best performance in all human pose estimation benchmarks such as COCO, OCHuman, and MPII. However, because Vision Transformer has a heavy model structure with a large number of parameters and requires a relatively large amount of computation, it costs users a lot to train the model. Accordingly, the based model overcame the insufficient Inductive Bias calculation problem, which requires a large amount of computation by Vision Transformer, with Local Representation through a convolutional neural network structure. Finally, the proposed model obtained a mean average precision of 0.694 on the MS COCO benchmark with 3.28 GFLOPs and 9.72 million parameters, which are 1/5 and 1/9 the number compared to ViTPose, respectively.

Pose Estimation of a Cylindrical Object Using Genetic Algorithm (유전자 알고리즘을 이용한 원기둥형 물체의 자세 추정 방법)

  • Jeong Kyuwon
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.14 no.3
    • /
    • pp.54-59
    • /
    • 2005
  • The cylindrical object are widely used as mechanical parts in the manufacturing process. In order to handling those objects using a robot or an automated machine automatically, the pose of the object must be known. The pose can be described by two rotation angles; one angle about the x axis and the other about the y axis. In the many previous researches these angles were obtained by the computationally intensive algorithm, that is, fitting the data as a polynomial and doing pseudo inverse. So that, this method required high performance microprocessor. In this paper in order to avoid complex computation, a new method based on a genetic algorithm is proposed and analyzed through a series of simulations. This algorithm utilized the geometry of the cylindrical shape. The simulation results show that this method find the pose angles very well In most cases, but the computation time is randomly changed because the genetic algorithm is basically one of the random search method.