• Title/Summary/Keyword: port congestion

Search Result 139, Processing Time 0.025 seconds

Port Volume Anomaly Detection Using Confidence Interval Estimation Based on Time Series Analysis (시계열 분석 기반 신뢰구간 추정을 활용한 항만 물동량 이상감지 방안)

  • Ha, Jun-Su;Na, Joon-Ho;Cho, Kwang-Hee;Ha, Hun-Koo
    • Journal of Korea Port Economic Association
    • /
    • v.37 no.1
    • /
    • pp.179-196
    • /
    • 2021
  • Port congestion rate at Busan Port has increased for three years. Port congestion causes container reconditioning, which increases the dockyard labor's work intensity and ship owner's waiting time. If congestion is prolonged, it can cause a drop in port service levels. Therefore, this study proposed an anomaly detection method using ARIMA(Autoregressive Integrated Moving Average) model with the daily volume data from 2013 to 2020. Most of the research that predicts port volume is mainly focusing on long-term forecasting. Furthermore, studies suggesting methods to utilize demand forecasting in terms of port operations are hard to find. Therefore, this study proposes a way to use daily demand forecasting for port anomaly detection to solve the congestion problem at Busan port.

Design of a Predictive Model Architecture for In-Out Congestion at Port Container Terminals Through Analysis of Influencing Factors (항만 컨테이너 터미널 반출입 혼잡 영향 요소 분석을 통한 반출입 혼잡도 예측 모델 아키텍처 개념 설계)

  • Kim, Pureum;Park, Seungjin;Jeong, Seokchan
    • The Journal of Information Systems
    • /
    • v.33 no.2
    • /
    • pp.125-142
    • /
    • 2024
  • Purpose The purpose of this study is to identify and analyze the key factors influencing congestion in the in-out transportation at port container terminals, and to design of a predictive model for in-out congestion based on these analysis. This study focused on architecting a deep learning-based predictive model. Design/methodology/approach This study was conducted through the following methodology. First, hypotheses were established and data were analyzed to examine the impact of vessel schedules and external truck schedules on in-out transportation. Next, explored time series forecasting models to a design the architecture for deep learning-based predictive model. Findings According to the empirical analysis results, this study confirmed that vessel schedules significantly affect in-out transportation. Specifically, the volume of transportation increases as the vessel arrival/departure time and the cargo cutoff time approach. Additionally, significant congestion patterns in transportation volume depending on the day of the week and the time of day were observed.

A Study on the Improvement of Physical Distribution System in Inchon Port (인천항 물류시스템의 실태분석 및 개선방안에 관한 연구 -입항지원시스템을 중심으로-)

  • 황해성;곽규석
    • Journal of Korean Port Research
    • /
    • v.12 no.2
    • /
    • pp.233-242
    • /
    • 1998
  • The Inchon port has been heavily congested due to the tidal restriction in passing the lock and the shortage of berths or warehouses. The current congestion is predicted to become worse by the induced traffics near the lock entrance after completion of North harbour expansion and of Kyung-In canal construction. It is also expected that the newly developed configuration of the Inchon port will result in increasing the rate of marine accidents around the lock entrance because of the over-utilization of the limited capacity of the junction from the North harbour and the Kyung-In canal. This study adopts a systematic approach in analysing the physical distribution system of the inner-lock area in order to figure out alternative routes which are designed to improve the port efficiency. Ship maneuvering simulation is also attempted to propose a new approaching route to the canal as an alternative path in order to avoid the traffic accidents caused by the extreme congestion. The result of the ship maneuvering simulation demonstrates that the alternative routes by way of Buk-Sudo, Janbong-Sudo, north of Si-Do and Sin-Do is recommended routes which can satisfy the safety requirements of approaching to the canal entrance.

  • PDF

Evaluation of the Traffic Congestion in the Passage I of Pusan Harbour due to the Operning of the Extended Terminal adjacent to the Gamman Terminal and Other Port Developments (감만부두 확장구역 개장과 기타 항만개발이 장래 부산 북항에 미치는 해상교통 혼잡도 평가에 관하여+)

  • 구자윤;여기태
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 1999.10a
    • /
    • pp.91-99
    • /
    • 1999
  • In Pusan Harbour, new port development projects are implemented such as the Extended Terminal adjacent to the Gamman Terminal, Pusan New Port, the Nary $\infty$ piers, etc. which will require new marine traffic environments in the Passage I of Pusan Harbour Specially, the turning basin of the Extended Terminal adjacent to the Gamman Terminal gas been designed to overlay the Passage I of Pusan Harbour, Which will interrupt the inbound traffic flow and the results will be worried to decrease the efficiency of port operation. Therefore, this paper will be aimed to evaluate the traffic congestion in the Pusan Passage I due to the opening of new ports within Pusan Harbour in 2006 and 2011 by using computer simulation based the queueing theory.

Research on Prediction of Maritime Traffic Congestion to Support VTSO (관제 지원을 위한 선박 교통 혼잡 예측에 관한 연구)

  • Jae-Yong Oh;Hye-Jin Kim
    • Journal of Navigation and Port Research
    • /
    • v.47 no.4
    • /
    • pp.212-219
    • /
    • 2023
  • Vessel Traffic Service (VTS) area presents a complex traffic pattern due to ships entering or leaving the port to utilize port facilities, as well as ships passing through the coastal area. To ensure safe and efficient management of maritime traffic, VTS operators continuously monitor and control vessels in real time. However, during periods of high traffic congestion, the workload of VTS operators increases, which can result in delayed or inadequate VTS services. Therefore, it would be beneficial to predict traffic congestion and congested areas to enable more efficient traffic control. Currently, such prediction relies on the experience of VTS operators. In this paper, we defined vessel traffic congestion from the perspective of a VTS operator. We proposed a method to generate traffic networks using historical navigational data and predict traffic congestion and congested areas. Experiments were performed to compare prediction results with real maritime data (Daesan port VTS) and examine whether the proposed method could support VTS operators.

An Analysis of Ship's Waiting Ratio in the Korean Seaports (국내 항만의 선박 대기율 실증 분석 연구)

  • Kim, Eun-Soo;Kim, Geun-Sub
    • Journal of Navigation and Port Research
    • /
    • v.40 no.1
    • /
    • pp.35-41
    • /
    • 2016
  • Port congestion has been recognized as one of the critical factors for port service competitiveness and port selection criteria. However, congestion ratio, the congestion index currently used by Korea, plays a very limited role in shipping companies' and shippers' selection of port and port authorities' decision making regarding port management and development. This is mainly due to the fact that this ratio is only calculated as the ratio of the number of vessels by each port. Therefore, this study aims to measure service level related to vessel entry and departure in Korea ports by evaluating waiting ratio(WR) according to terminals and vessel types. The results demonstrate that the waiting ratio of containerships and non-containerships is less than 4% and 15% respectively, which satisfies the reasonable level suggested by the UNCTAD and OECD. Port of Pohang is revealed to have the highest WR of 57% and among the terminals, No. 1 Terminal of the Shinhang area has the highest WR. In terms of ship types, WR of Steel Product Carrier is highest, followed by General Cargo Ship and Bulk Carrier at the Pohang Shinhang area. In addition to WR, berth occupancy ratio as well as the number and time of waiting vessels can be utilized to evaluate service level by ports and terminals from port users' perspective, and furthermore, to improve the port management and development policy for port managers or authorities.

Analysis of Correlation between Marine Traffic Congestion and Waterway Risk based on IWRAP Mk2 (해상교통혼잡도와 IWRAP Mk2 기반의 항로 위험도 연관성 분석에 관한 연구)

  • Lee, Euijong;Lee, Yun-sok
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.25 no.5
    • /
    • pp.527-534
    • /
    • 2019
  • Several types of mathematical analysis methods are used for port waterway risk assessment based on marine traffic volume. In Korea, a marine traffic congestion model that standardizes the size of the vessels passing through the port waterway is applied to evaluate the risk of the waterway. For example, when marine traffic congestion is high, risk situations such as collisions are likely to occur. However, a scientific review is required to determine if there is a correlation between high density of maritime traffic and a high risk of waterway incidents. In this study, IWRAP Mk2(IALA official recommendation evaluation model) and a marine traffic congestion model were used to analyze the correlation between port waterway risk and marine traffic congestion in the same area. As a result, the linear function of R2 was calculated as 0.943 and it was determined to be significant. The Pearson correlation coefficient was calculated as 0.971, indicating a strong positive correlation. It was confirmed that the port waterway risk and the marine traffic congestion have a strong correlation due to the influence of the common input variables of each model. It is expected that these results will be used in the development of advanced models for the prediction of port waterway risk assessment.

A Study on the Optimal Combination of Berth and Crane in Container Terminal (컨테이너터미널 사용자비용을 최소로 하는 선석과 크레인의 최적구성에 관한 연구)

  • Yun, Y.C.;Moon, S.H.
    • Journal of Korean Port Research
    • /
    • v.9 no.2
    • /
    • pp.39-49
    • /
    • 1995
  • Recently, the traffic volume has been greatly increased partly because of high growth rate of domestic and world economy, and partly because of increased transhipment demand resulting from the destruction of Kobe port by earthqwake early this year. So, container facilities in Pusan Port are under serious congestion. The congestion costs in connection with container traffic in Pusan Port is estimated to be 29.3 billion won in 1994. In 1995 the situation is still worsening. PECT has continued to grow annually by 35% in cargo handling exceeding more than 31% of the total container volumes handled in Korea. The BOR of container berths in PECT in 1994 is 75% reflecting extreme congestion in container traffic. The reason for such serious congestion in PECT is the shortage of container handling facilities in comparison with ever-increasing cargo traffic. In order to solve the provisional problem, the shortage of handling capacity, a model developed to optimize the operation of PECT is described and demonstrated. The model minimizes total port costs, including the costs of dock labour, facilities and equipment, ship, containers, and cargo. The object of this study is, through the model results, mainly to determine the optimal combination of berths and cranes under various circumstances and to show that total costs per ship or unit of cargo served can be reduced by increasing the number of cranes per berth and berth utilization above present levels. Eventually, the results obtained with this model in PECT suggest that increase to 3 in the number of cranes per existing berth could reduce the need for major investments in berths and even reduce operating costs.

  • PDF

A Study on Estimate Model for Peak Time Congestion

  • Kim, Deug-Bong;Yoo, Sang-Lok
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.20 no.3
    • /
    • pp.285-291
    • /
    • 2014
  • This study applied regression analysis to evaluate the impact of hourly average congestion calculated by bumper model in the congested area of each passage of each port on the peak time congestion, to suggest the model formula that can predict the peak time congestion. This study conducted regression analysis of hourly average congestion and peak time congestion based on the AIS survey study of 20 ports in Korea. As a result of analysis, it was found that the hourly average congestion has a significant impact on the peak time congestion and the prediction model formula was derived. This formula($C_p=4.457C_a+29.202$) can be used to calculate the peak time congestion based on the predicted hourly average congestion.

An Analysis of the Port Transportation System (항만운송시스템의 분석에 관한 연구)

  • 이철영;문성혁
    • Journal of the Korean Institute of Navigation
    • /
    • v.7 no.1
    • /
    • pp.1-32
    • /
    • 1983
  • The delay due to congestion has recently attracted widespread attention with the analysis of over-all operation at the port. But, the complexity of the situation is evident in view of the large number of factors which impinge on the considerable end. Queueing theory is applicable to a large scale transportation system which is associated with arrivals of vessels in a large port. The attempt of this paper is to make an extensive analysis of the port transport system and its economic implications from the viewpoint that port is one of the physical distribution facilities and a kind of queueing system which includes ships and cargoes as port customer. By analyzing the real data on the Port of Pusan, it is known that this port can be represented as a set of multi-channel with identical setof Poisson arrival and Erlang service time, and also it is confirmed that the following formula is suitable to calculate the mean delay in this port, namely, $W_4={\frac{\rho}{\lambda(1-\rho)} {\frac{e_N(\rho{\cdot}N)}{D_{N-1}(\rho{\cdot}N)}$ where, ${\lambda}$: mean arrival rate $\mu$: mean servicing rate; N: number of servicing channel; ${\rho}$: utillization rate (${\lambda}/N{\mu}$) $e_N$: the Poisson function Coming to grips with the essentials of the cost of delay due to congestion, a simple ship journey cost model is adopted and the operating profit sensitivity to variation in port time is examined, and for purpose of a future development for port princing service the marginal cost is approximately calculated on the basis of queueing theory.

  • PDF