• 제목/요약/키워드: porphyry-type

Search Result 49, Processing Time 0.029 seconds

Characteristics of the Copper Mineralization in Tsogttsetsii Area, Mongolia (몽골 촉트체치 지역의 동 광화작용 특성)

  • Davaasuren, Otgon-Erdene;Lee, Bum Han;Kim, In Joon;Ryoo, Chung-Ryul;Heo, Chul-Ho
    • Journal of the Mineralogical Society of Korea
    • /
    • v.29 no.1
    • /
    • pp.23-34
    • /
    • 2016
  • Tsogttsetsii area, an intrusive complex associated with Cu porphyry mineralization, is located in the Gurvansaikhan island arc terrane of the Central Asian Orogenic belt, Southern Mongolia. We performed a reconnaissance survey in Tsogttsetsii area. Cu mineralization in Tsogttsetsii area is porphyry Cu type related with alkali granite intruded in Permian. Mineralogical and textural properties of the ores and associated minerals were analyzed using X-ray diffraction, thin section petrography, and Scanning electron microscopy-Energy dispersive spectroscopy (SEM-EDS). Ore minerals identified in polarizing microscope are magnetite, pyrite and bornite. Propylitic alteration zone occurs broadly in the area where malachite occurrences are shown to be spread intensively in alkali granite area. Quartz, sericite, chlorite and epidote were observed in the alteration zone samples. As results of XRD and SEM-EDS analysis, samples of copper oxides were composed mainly of malachite, cuprite and small amounts of quartz. Average and maximum Cu contents of samples collected from malachite occurrences area are 759 ppm and 6190 ppm, respectively. The characteristics of mineralization in Tsogttsetsii area is similar to Oyu Tolgoi Cu-Au (Mo) deposit and Tsagaan Suvarga Cu-Mo deposit which are 56 km south and 120 km northeast from Tsogttsetsii area, respectively. Characteristics of the study area, such as the geology, tectonic environment, lithology, mineralization, and alterations of the rocks within the survey area, resemble the characteristics of other porphyry deposits. Therefore further exploration including Induced Polarization (IP) survey for identifying subsurface orebody is required.

Characteristics on the Occurrence of Oxidized Copper at Suparaura, Peru: Preliminary Study (페루 수빠라우라 산화동 산출지의 특성: 예비연구)

  • Kim, Eui-Jun;Heo, Chul-Ho;Koh, Sang-Mo
    • Economic and Environmental Geology
    • /
    • v.44 no.1
    • /
    • pp.11-20
    • /
    • 2011
  • Geological survey on the occurrence of copper oxide in Suparaura area around Abancay in the south-central part of Peru had been carried out. Geology of the area is composed of granitoids such as granodiorite, tonalite and andesitic porphyry related to Tertiary igneous activity, Ferrobamba formation with Cretaceous limestone and sandstone in descending order. Red sandstone is widely distributed and emplaced with their attitude of $N70^{\circ}W$ strike and $60^{\circ}NE$ dip. Copper oxides were mineralized along the bedding plane of red sandstone with maximum width of 30 cm. Ore-body structure bounding red sandstone strata have different occurrence characteristics with generally known porphyry system in terms of alteration, mineral assemblage and occurrence mode. Therefore, it is thought to be stratiform sediment-hosted copper (SSC) deposits genetically corresponding to Mississippi-valley type from preliminary study.

Geologic and Fluid Inclusion Studies of Chongyang Tungsten Ore Deposits, South Korea (청양중석광상(靑陽重石鑛床)의 지질(地質)과 유체포유물(流體包有物)에 의(依)한 온도측정(溫度測定)에 관(關)한 연구(硏究))

  • Kim, Kyu Han
    • Economic and Environmental Geology
    • /
    • v.10 no.1
    • /
    • pp.1-18
    • /
    • 1977
  • Chongyang tungsten ore deposits, one of the most important tungsten mines in South Korea, me open space filling hydrothermal vein deposits embedded in Precambrian biotite gneiss and, Cretaceous (?) granite porphyry. Some wolframite-bearing quartz veins are closely associated with -quartz porphyries which strike about $N15^{\circ}-25^{\circ}W$ and dip $800^{\circ}SE$ to vertical. Mineralization took place in near vertical vein systems of 5 to 2000 meter long in the biotite gneiss and granite porphyry stock during early Cretaceous and Tertiary (?) period. The hydrothermal mineral paragensis has indicated that there were two major stages: vein and vug stages. The principal vein mineral is wolframite in a gangue of quartz with small amount of fluorite, pyrite, beryl and carbonate minerals. Present in minor amounts are molybdenite, bithmuthinite, native bismuth, arsenopyrite, galena, chalcopyrite, pyrrhotite, sphalerite and scheelite. Fluid inclusion study from the minerls at Chongyang mine reveals that vein stage fluids attained a temperature range of $200^{\circ}C-355^{\circ}C$ and vug stage $160^{\circ}C-350^{\circ}C$. The filling temperatures show the higher range of $200^{\circ}-355^{\circ}C$ in quartz and $280^{\circ}C-348^{\circ}C$ in beryls, whereas the lower emperature range of $283^{\circ}C-295^{\circ}C$ in rhodochrosite and $160^{\circ}-253^{\circ}C$ in fluorites. These temperatures are in reasonably good agreement with mineral paragnesis in this ore deposits. Volfamite minerals were analysed for major components. $WO_3$, MnO and FeO by wet chemical method. Chemical analysis indicates that they contain 70.56-71.54% $WO_3$, 8.52-10.01% MnO and 10.00-11.58% FeO. MnO/FeO ratios of wolframites shows the range of 0.78-0.94 which maybe indicates a comparatively high temperature type of hydrothermal deposits.

  • PDF

Volcanisms and igneous processes of the Samrangjin caldera, Korea (삼랑진 칼데라의 화산작용과 화성과정)

  • 황상구;김상욱;이윤종
    • The Journal of the Petrological Society of Korea
    • /
    • v.7 no.3
    • /
    • pp.147-160
    • /
    • 1998
  • The Samrangjin Caldera, a trapdoor-type, formed by the voluminous eruption of the silicic ash-flows of the Samrangjin Tuff which is above 630m thick at the northern inside of the caldera and thinnerly 80m at the southern inside. The caldera volcanism eviscerated the magma chamber by a series of explosive eruptions during which silicic magma was ejected to form the Samrangjin Tuff. The explosive eruptions began with phreatoplinian eruption, progressed through small plinian eruption and transmitted with ash-flow eruption. During the ash-flow eruption, contemporaneous collapse of the roof of the chamber resulted in the formation of the Samrangjin caldera, a subcircular depression subsiding above 550m deep. During postcaldera volcanism after the collapse, flow-banded rhyolite was emplaced as cental plug along the central vent and ring dikes along the caldera margins. Subsequently rhyodacite porphyry and dacite porphyry were emplaced along the inner side of the ring dike. After their emplacement, residual magma was emplaced as a hornblende biotite granite stock into the southwestern caldera margin. In the northeastern part, the eastern dikes were cut final intrusions of granodioritic to granitic composition along the fault zone of $^{\circ}$W trend.

  • PDF

A Study on Red Hill Copper Deposits of the Dongjom Mine (동점광산(銅店鑛山)의 붉은등 광체(鑛體)의 성인(成因)에 관한 연구(硏究))

  • Kim, Ok Joon;Kim, Kyu Han
    • Economic and Environmental Geology
    • /
    • v.7 no.4
    • /
    • pp.157-173
    • /
    • 1974
  • The Red Hill deposit of the Dongjom Copper Mine is the most promising deposit of the mine and under intensive exploration at present although there are eight more deposits of vein type. With total 2160m drilling of 9 holes completed and 400m drilling on two holes underway, the nature of the Red Hill deposit has come more clear. The copper content in the whole ore body is meager so far as the exploration done up to present indicates, but there are evidences that mineralization covers all over the granodiorite cupola at the Red Hill area. The petrological work and assay on the samples taken by the writers indicate that granodiorite rocks can be divided into fresh zone and alteration zone. Alteration zone consists of potassic and argillic zones accompanyied by silicification zone on basis of Lowell and Guilbert model Argillic zone has closely related with a mineralization in the Red Hill deposit. It has been cleared that the alteration acompanyied with the mineralization took place not only &long vertical fissures but also in the irregular lateral zone, the nature of which is unknown. Judging from the results of exploration and petrochemical study on the Red Hill deposit which is imbedded in a southern part of the granodiorite cupola, it can be concluded by the writer's opinion that the Red Hill deposit is possibly a porphyry copper deposit, because the shape of the ore body, mineral zoning and paragenesis and wall rock alteration resemble to those of typical porphyry copper deposits. It is the writers' opinion that more exploration work is required so as to evaluate the deposit.

  • PDF

Mineralogy, Genesis and Potential of a New Tertiary Mineralized Zone in Yeongil Area, Korea (영일지역(迎日地域) 제삼기(第三紀) 신광화대(新鑛化帶)의 광물학적(鑛物學的) 특성(特性), 성인(成因) 및 그 잠재성(潛在性)에 관(關)한 연구(硏究))

  • Kim, Soo Jin;Noh, Jin Hwan
    • Economic and Environmental Geology
    • /
    • v.10 no.2
    • /
    • pp.53-66
    • /
    • 1977
  • Epithermal Mn-Au-Ag deposits of subvolcanic type in the Yeongil area discovered by one (Soo Jin Kim) of the present authors was studied with emphasis on their mineralogy, genesis and future potential. Mineralization is genetically related to volcanic activities of the Tertiary Period, which have produced porphyritic rhyolite, granite porphyry, felsitic rhyolite and agglomerate. Ore deposits are closely associated with felsitic rhyolite. They occur as breccia-filling, veins, or networks. Mineralization is characterized by rhodochrosite-sulfide ores of breccia-type in the central zone, and sulfide ores of disseminated type in the outer zone. Sulfides consist mainly of pyrite and marcasite, with minor chalcopyrite, sphalerite, argentian tetrahedrite, galena and gold in the central zone, and of pyrite, marcasite and argentian tetrahedrite in the outer zone. Sulfides are generally not easily identified with naked eye because of their very fine-grained nature. Wall rock alteration zones are also developed around ore deposits over the large area. Occurrence of ore deposits and the nature of mineralization indicate that the uppermost portion of ore deposits are now exposed on the surface, and therefore, the main mineralized zones are expected in depth.

  • PDF

Ore Genesis of the Wondong Polymetallic Mineral Deposits in the Taebaegsan Metallogenic Province (태백산광화대내의 원동 다금속광상의 성인)

  • Hwang, Duk Hwan;Lee, Jae Yeong
    • Economic and Environmental Geology
    • /
    • v.31 no.5
    • /
    • pp.375-388
    • /
    • 1998
  • The purpose of this study is to investigate the ore genesis and occurrence of the Wondong polymetallic mineral deposits. The Pb-Zn, Fe and W-Mo mineralizations are found in skarn zones which formed mainly in or along the fault shear zones with the $N25-40^{\circ}W$ and $N10-50^{\circ}E$ directions, whereas the Cu-Mo mineralization is appeared hydrothermal replacement zone. The skarn minerals consist mainly of garnet and epidote, which were the last alteration phases between pneumatolytic and hydrothermal stages. The mineral paragenesis toward the late stage are as follows: arsenopyrite, scheelite, magnetite, pyrite, pyrrhotite, sphalerite, galena, chalcopyrite and molybdenite. Average ore grades are 0.33 g/t Au, 46.29 g/t Ag, 0.06% Cu, 4.4% Pb, 2.61% Zn and 29.39% Fe in tunnels, and 0.31 % Cu, 0.52% Pb, 6.29% Zn, 29.29% Fe, 0.03% Mo and 0.12% $WO_3$ in drill cores. Fluid inclusion data shows that Type I (liquid-rich), Type II (vapor-rich) and Type III (halite-bearing) inclusions are coexisted and their homogenization temperatures are quite similar. This indicates that boiling conditions have been reached during the mineralization. It is also likely that the ore solutions were evolved through the mixing between magmatic and meteoric waters. Rhyolite and quartz porphyry far the mineralization probably are not responsible of the Wondong polymetallic mineral deposits.

  • PDF

Genesis of two contrasting metallogenic provinces in the Cretaceous Gyeongsang Basin, Korea

  • Park, Seon-Gyu;Lee, Sang-Yeol;So, Chil-Sup;Ryu, In-Chang;Wee, Soo-Meen;Park, Sang-Hoon;Heo, Chul-Ho
    • Proceedings of the KSEEG Conference
    • /
    • 2003.04a
    • /
    • pp.184-185
    • /
    • 2003
  • The Cretaceous magmatism in the Gyeongsang Basin, which intruded into the upper crust or extruded throughout ENE-trending volcanic belts in southern Korea, led to the formation of two contrasting metallogeinic provinces: the Haman-Gunbug-Goseong and the Euiseong. The Haman-Gunbug-Goseong metallogenic province in the southwestern portion of the Gyeongsang Basin consists of dominantly nonmarine sedimentary rocks (e.g., the Sindong and Hayang groups) which are rarely intercalated with andesitic pyroclastics and flows. (omitted)

  • PDF

Characterization of Groundwater Chemistry and Fluoride in Groundwater Quality Monitoring Network of Korea

  • Han, Jiwon
    • Journal of the Korean earth science society
    • /
    • v.42 no.5
    • /
    • pp.556-570
    • /
    • 2021
  • This study presents the data analysis results of groundwater chemistry and the occurrence of fluoride in groundwater obtained from the groundwater quality monitoring network of Korea. The groundwater data were collected from the National Groundwater Information Center and censored for erratic values and charge balance (±10%). From the geochemical graphs and various ionic ratios, it was observed that the Ca-HCO3 type was predominant in Korean groundwater. In addition, water-rock interaction was identified as a key chemical process controlling groundwater chemistry, while precipitation and evaporation were found to be less important. According to a non-parametric trend test, at p=0.05, the concentration of fluoride in groundwater did not increase significantly and only 4.3% of the total groundwater exceeded the Korean drinking water standard of 1.5 mg/L. However, student t-tests revealed that the fluoride concentrations were closely associated with the lithologies of tuff, granite porphyry, and metamorphic rocks showing distinctively high levels. This study enhances our understanding of groundwater chemical composition and major controlling factors of fluoride occurrence and distribution in Korean groundwater.

U-Pb(SHRIMP) and K-Ar Age Dating of Intrusive Rocks and Skarn Minerals at the W-Skarn in Weondong Deposit (원동 중석 스카른대에서의 관입암류와 스카른광물에 대한 U-Pb(SHRIMP) 및 K-Ar 연대)

  • Park, Changyun;Song, Yungoo;Chi, Se Jung;Kang, Il-Mo;Yi, Keewook;Chung, Donghoon
    • Journal of the Mineralogical Society of Korea
    • /
    • v.26 no.3
    • /
    • pp.161-174
    • /
    • 2013
  • The geology of the weondong deposit area consists mainly of Cambro-Ordovician and Carboniferous-Triassic formations, and intruded quartz porphyry and dyke. The skarn mineralized zone in the weondong deposit is the most prospective region for the useful W-mineral deposits. To determine the skarn-mineralization age, U-Pb SHRIMP and K-Ar age dating methods were employed. The U-Pb zircon ages of quartz porphyry intrusion (WD-A) and feldspar porphyry dyke (WD-B) are 79.37 Ma and 50.64 Ma. The K-Ar ages of coarse-grained crystalline phlogopite (WD-1), massive phlogopite (WDR-1), phlogopite coexisted with skarn minerals (WD-M), and vein type illite (WD-2) were determined as $49.1{\pm}1.1$ Ma, $49.2{\pm}1.2$ Ma, $49.9{\pm}3.6$ Ma, and $48.3{\pm}1.1$ Ma, respectively. And the ages of the high uranium zircon of hydrothermally altered quartz porphyry (WD-C) range from 59.7 to 38.7 Ma, which dependson zircon's textures affected by hydrothermal fluids. It is regarded as the effect of some hydrothermal events, which may precipitate and overgrow the high-U zircons, and happen the zircon's metamictization and dissolution-reprecipitation reactions. Based on the K-Ar age datings for the skarn minerals and field evidences, we suggest that the timing of W-skarn mineralization in weondong deposit may be about 50 Ma. However, for the accurate timing of skarn mineralization in this area, the additional researches about the sequence of superposition at the skarn minerals and geological relationship between skarn deposits and dyke should be needed in the future.