• Title/Summary/Keyword: porphyroclastic texture

Search Result 5, Processing Time 0.021 seconds

Textural and Geochemical Characteristics and their Relation of Spinel Peridotite Xenoliths from Jeju Island (제주도 첨정석 페리도타이트 포획암의 조직 및 지화학적 특성과 그 관련성)

  • Yu, Jae-Eun;Yang, Kyoung-Hee;Kim, Jin-Seop
    • The Journal of the Petrological Society of Korea
    • /
    • v.19 no.3
    • /
    • pp.227-244
    • /
    • 2010
  • Abundant spinel lherzolite xenoliths showing distinctively different textural types such as protogranular, porphyroclastic, and mylonitic texture are trapped in the basaltic rocks from southeastern part of Jeju Island. These xenoliths show the textural spectrum from coarse-grained protogranular through porphyroclastic with bimodal grain size to fine-grained and foliated mylonitic texture. They tend to decrease in grain sizes and show more linear grain boundaries and more frequent triple junctions from protogranular through porphyroclastic to mylonitic. Spinel has different occurrence mode according the textural type. Spinel is always associated with orthopyroxene in protogranular texture, whereas it is scattered and independent of orthopyroxene in mylonitic texture. Additionally, porphyroblast from porphyroclastic and mylonitic textures has internal deformation features such as kink band, undulatory extinction and curved lamella, whereas neoblast is strain-free. These textural features indicate increasing degree of static/dynamic recrystallization from protogranular through porphyroclastic to mylonitic texture. The mg#[$=100{\times}Mg/(Mg+Fe_t)$] of olivine, orthopyroxene and clinopyroxene is relatively constant (ol: 88-91; opx: 89-92; cpx: 89-92) regardless of textural differences. The mg# of constituent minerals, NiO content (0.3~0.4 wt%) and MnO content (0.1~0.2 wt%) of olivine are similar to those of mantle xenoliths worldwide, also indicating that studied spinel lherzolite xenoliths were mantle residues having experienced 20~25% partial melting. The geochemical and textural characteristics have close relations showing that LREE and incompatible trace elements content of orthopyroxene and clinopyroxene increases from protogranular through porphyroclastic to mylonitic. These observations suggest that the studied mantle xenoliths experienced metasomatism by LREE enriched melt or fluid after partial melting, indicating a close relation between deformation and metasomatism. The metasomatism was possibly confined to narrow shear zones from where porphyroclastic and mylonitic textured xenoliths originated. These shear zones might favorably drive the percolation of LREE-enriched melts/fluids responsible for the metasomatism in the lithospheric mantle below the Jeju Island.

Geochemical Characteristics of Clinopyroxenes in the Upper Mantle Rocks under the Baegryeong Island and the Boeun (백령도와 보은 지역의 상부맨틀암석 내의 단사휘석의 지화학적 특징)

  • Kil Young Woo;Lee Seok Hoon
    • Journal of the Mineralogical Society of Korea
    • /
    • v.18 no.1
    • /
    • pp.61-72
    • /
    • 2005
  • Modal and chemical compositions of clinopyroxnes in spinel peridotites from the Baegryeong Island and the Boeun, enclosed in Miocene alkali basalt, are important for understanding the pre-eruptive temperature condition and chemical processes such as mantle depletion and enrichment. All spinel peridotites show transitional texture between protogranular and porphyroclastic textures. Temperature ranges of spinel peridotites from the Baegryeong Island and the Boeun at 15 kb are 773∼1188℃ and 705∼1106℃, respectively. The spinel peridotites from the Baegryeong Island and the Boeun have undergone the 1∼10% and 1∼4% fractional melting, which were determined by using primitive mantle-normalized Y and Yb of clinopyroxenes. LREE enrichment patterns of clinopyroxene indicate that these rocks from both areas have undergone cryptic mantle metasomatism without new minerals.

Petrological Study on the Mantle Xenolith from Dongsuak Crater, Jeju Island (제주도 동수악 분화구에서 산출되는 맨틀포획암의 암석학적 연구)

  • Kil, Youngwoo;Hong, Sei Sun;Lee, Choon Oh;Ahn, Ung San
    • Korean Journal of Mineralogy and Petrology
    • /
    • v.35 no.3
    • /
    • pp.173-182
    • /
    • 2022
  • Dongsuak crater, located in the mid-mountainous region of Jeju Island, is located at an altitude of about 700 m, and the newly discovered Dongsuak spinel peridotites was enclosed in Dongsuak alkaline basalt. The Dongsuak spinel peridotites are composed of olivine, orthopyroxene, clinopyroxene, and spinel with porphyroclastic texture under the an equilibrium state. The variations of mineral major and trace compositions indicates that the Dongsuak spinel peridotites originate at depth from 66 to 88 km under an equilibrium temperature of about 960℃~1068℃. The Dongsuak spinel peridotites have been undergone about 1~3% fractional melting. The LREE-enriched characteristics indicate that the Dongsuak spinel peridotites have been undergone cryptic metasomatism by silicate melt without new minerals.

Petrological Study on the Mantle Xenolith from Songaksan, Jeju Island (제주도 송악산에 분포하는 맨틀포획암의 암석학적 연구)

  • Youngwoo Kil
    • Korean Journal of Mineralogy and Petrology
    • /
    • v.36 no.4
    • /
    • pp.365-376
    • /
    • 2023
  • Songaksan, formed about 3800 year ago, is one of the tuff rings in the Jeju Island. Mantle xenoliths, spinel peridotites, are enclosed in the Songaksan Trachybasalt. The spinel peridotites are less than 2 cm in size and are composed of olivine, orthopyroxene, clinopyroxene, and spinel. The uniform compositions of the minerals from core to rim indicate that equilibrium was reached in the spinel peridotites before these were enclosed in the host magma. The spinel peridotites originated at depths between 55 and 60 km with equilibrium temperatures ranging from 915 to 968℃. The spinel peridotites from Songaksan reveal porphyroclastic texture with a lot of neoblast minerals. Olivines display strong kink banding, indicating that the upper mantle of Songaksan has been deformed. The spinel peridotites from Songaksan have undergone about 5~7% fractional melting, and cryptic metasomatism by an silicate melt. The period of entrainment and transport of the spinel peridotites in the host magma is about 15 days.

Mineralogy and Geochemistry of Ultramafic Rocks from the Singok Area, Western Part of Chungnam (충남 서부 신곡 지역에 분포하는 초염기성암의 광물조성 및 지구화학)

  • 송석환;송윤섭
    • Economic and Environmental Geology
    • /
    • v.34 no.4
    • /
    • pp.395-415
    • /
    • 2001
  • In the Singok area, western part of Chungcheongnam-Do, two ultramafic ma~ses, Singok mass and Kaewol mass, occur as isolated lenticular bodies in the Precambrian Kyeonggi gneiss complex. The masses extend for several hundred meter to NNE direction, parallel to the main fault line of this area. The rocks are dunite and harzburgite, but partially and absolutely serpentinized. They dominantly show porphyroclastic and recrystallized textures with equigranular-mosaic and protogranular textures. In spite of differences among the alteration and metamorphism, the ultramafic masses are characterized by varying amounts of high fosteritic olivine ($Fo_{0.88-0.93}$), magnesian pyroxene ($En_{0.93-0.97}$), and tremolitic to tschermakitic hornblende with minor spinel, serpentine, chlorite, calcite, magnetite, phlogopite and talc. It is compared with adjacent gneiss complex containing amphibole, biotite, plagioclase, alkali-feldspar and quartz. Geochemically, these rocks show high magnesium number (Mg>90.38), and transitional element (Ni=595-2480, Cr==IOlO-4400, Co=36-120 ppm), low alkali element ($Na_{2}O$<0.3, $K_{2}O$<0.11, $Al_{2}O_3$<2.95 wt%) and depleted incompatible element contents, which is compared with adjacent rocks (Mg < 83.69, $Na_{2}O$=1.02-3.42 wt%, $K_{2}O$=O.67-5.65 wt%, $Al_{2}O_3$=9.15-16.86 wt%, Ni < 435 ppm, Cr < 1440 ppm, Co<59 ppm, enriched incompatible element contents). Overall characteristics of ultramafic rocks from the Singok and Kaewol masses are similar to the those of adjacent ultramafic bodies in Chungnam with worldwide orogenic related Alpine type ultramalic rocks. Calculated geothermometries suggest that the ultramafic rocks have experienced metamorphism in the condition ranging from the greenschist facies to granulite facies.

  • PDF