• Title/Summary/Keyword: porphyritic granite

Search Result 64, Processing Time 0.02 seconds

Geologic and Geochemical study on the rock sequences containing oily materials in Southwestern Coast Area of Korea (한국서남해안지역(韓國西南海岸地域)에 분포(分布)하는 함유질물층(含油質物層)에 대(對)한 지질학적(地質學的) 및 지구화학적연구(地球化學的硏究))

  • Lee, Dai Sung;Lee, Ha-Yong
    • Economic and Environmental Geology
    • /
    • v.9 no.1
    • /
    • pp.45-73
    • /
    • 1976
  • This study has been made for the enlargement of a previous work of 1964 which was carried out by an author of this work emphasizing the stratigraphy, micropaleontology, depositional environment, and structural tectonics of the studied area. The stratigraphic sequences of the area are groupped into four units: (1) basement of Pre-Cretaceous, (2) lower sediments of Late Cretaceous, (3) upper sediments of Late Cretaceous and (4) igneous rocks of Late Cretaceous and Tertiary (?). The oldest rocks consisting of schists and gneisses of Pre-Cambrian and schistose granite' of Jurassic age are exposed at the base of this area on which the thick Cretaceous sediments were deposited. These old rocks are unconformably overlain by the lower sedimens of Late Cretaceous composed of three members, an alternation of black shale and tuffaceous sediments, fine tuff and rhyollite flow in ascending order. The oily material was found from the black shales of the alternation m"ember as semi-solid greaselike material, oily order and microscopic granular spherical material and oily stain. The lower sediments are also overlain, in low-angleunconfromity, by the 'upper sediments having three members, an alternation of volcanic conglomerate and andesitic tuff, rhyollitic tuff and andesite flow in the same order. The igneous suit of diabase, diorites, biotite granite, porphyritic granite and porphyries of the latest Cretaceous and small exposure of pitchstone of Tertiary (?) intruded into the pre-existed rocks above mentioned. Considerable amount of ostra- coda microfossils have been chemically extracted from the black shales of the lower sediments and the identification of the fossils suggests that the depositional environment of the sediments were under fresh or brackish water condition. The distribution of the geology and its tectonic data also suggest a combination of dome and basin structures in the area of San-i peninsula and Jin-do as shown in fig. 8. Between these two units an anticlinal structure was constructed. As a result of this study, a seismic survey in a district between U-su-yong and north coast of Jin-do is recommended to determine the underground features.

  • PDF

A Study on the Genesis of Eonyang Amethyst Deposits (언양(彦陽) 자수정 광상(鑛床)의 성인(成因)에 관한 연구(硏究))

  • Youn, Seok-Tai;Park, Hee-In
    • Economic and Environmental Geology
    • /
    • v.27 no.4
    • /
    • pp.335-343
    • /
    • 1994
  • The Eonyang amethyst deposits are composed of vug quartz emplaced in the Eonyang granites of Mesozoic Cretaceous age. The Eonyang granites are composed of biotite granite, porphyritic biotite granite, aplite and miarolitic granite. The petrochemical data of the Eonyang granites show the trend of subalkaline magma, calc-alkaline magma, I-type granitoid and magnetite series. The vug quartz show the characteristic growth zoning (white quartz-smoky quartz-amethyst) from wall side. Generally fluid inclusions in the vug quartz can be divided into four main types based on compositions (I-type: gas inclusion, II-type: liquid inclusion, III-type: polyphase inclusion, IV-type: liquid $CO_2$-bearing inclusion). Solid phase of polyphase inclusions are halite(NaCl), sylvite(KCl), hematite ($Fe_2O_3$) and unknown anisotropic solid. Homogenization temperatures inferred from the fluid inclusion study ranges from $440^{\circ}C$ to $485^{\circ}C$ in white quartz, from $227^{\circ}C$ to $384^{\circ}C$ in smoky quartz, from $133^{\circ}C$ to $186^{\circ}C$ in amethyst, respectively. Salinities of fluid inclusions in each mineralization stages ranges from 40 wt.% to 58 wt.% in white and smoky quartz, from 1.0 wt.% to 8.7 wt.% in amethyst respectively. A consideration of the pressure regime during vug quartz deposition based on the boiling evidence suggests lithostatic pressure of less than 72 bars. This range of pressure indicate that vug quartz lay at depth of 750 m below the surface at the during mineralization.

  • PDF

A study on the structure of Ogcheon Group in Goesan Area (괴산부근(槐山附近)에 분포(分布)하는 옥천층군(沃川層群)의 지질구조(地質構造)에 관(關)하여)

  • Lee, Dai Sung;Kim, Yong Jun;Chai, In Chul
    • Economic and Environmental Geology
    • /
    • v.10 no.4
    • /
    • pp.177-184
    • /
    • 1977
  • This study is focused on the geological structure of Igog-Jangam folded zone in the vicinity of Goesan town where Ogcheon group distributes. The geology is composed of Gyemyungsan formation, Daehyangsan quartzite, Munjuri formation and Hwanggangri formation of Ogcheon group unknown age in descending order, and porphyritic biotite granite and dyke rocks that intruded into the Ogcheon group. The study revealed that Igog-Jangam folded zone is a plunged synclinal fold based on the following evidences; 1) Some pebbles in Hwanggangri formation at Minaemi-gol (a name of village) consists of phyllite of Munjuri formation. 2) The pebble bearing phyllitic bed in this area, Hwanggangri formation was recognized as the uppermost member in Ogcheon group instead of the basal one of the group. 3) A crest of anticlinal fold has been appeared near the Goegang bridge as a structural counter-part of that of the present area. 4) The study of lineation of minor fold in Munjuri formation also suggests that Igog-Jangam folded zone manifests to be a synclinal structure.

  • PDF

Mineralogy and Genesis of Fe-Cu and Au-Bi-Cu Deposits in the Geodo Mine, Korea (거도광산(巨道鑛山) Fe-Cu 및 Au-Bi-Cu 광상(鑛床)에 대(對)한 광물학적(鑛物學的) 및 성인적(成因的) 연구(硏究))

  • Ko, Jai Dong;Kim, Soo Jin
    • Economic and Environmental Geology
    • /
    • v.15 no.4
    • /
    • pp.189-204
    • /
    • 1982
  • The Geodo mine is located in the southern limb of the Hambaeg syncline. Geology of the area consists of Paleozoic-Mesozoic sedimentary Rocks and Cretaceous igneous rocks. The important igneous rocks presumably related to skarnization and ore mineralization in the area, are the early granodiorite and the late porphyritic granodiorite. Two mineralogical types of ore deposits are recognized in the area. They are the Fe-Cu deposits in the Myobong formation and the Au-Bi-Cu deposits in the Hwajeol formation. Contact metamorphism due to granodiorite intrusion includes hornfelsization, exoskarnization and endoskarnization. Wall-rock alterations related to the Fe mineralization are grouped into the hydrothermal replacement skarnization and the hydrothermal filling skarnization. Another hydrothermal alteration is associated with the Cu mineralization. Various mineralogical analyses have been applied for the identification of minerals. They include optical microscopy, chemical analysis, etching test, X-ray diffraction, and infrared absorption spectroscopic analyses. The ore minerals in these ore deposits are classified into two groups;hypogene and supergene minerals. Hypogene minerals consist of magnetite, pyrite, chalcopyrite, and chalcocite. Supergene minerals consist of chalcocite, bornite, and geothite. Ore minerals show various kinds of ore texture: open-space filling, exsolution, replacement, and cementation texture. The gangue minerals consist of quartz, diopside, epidote, garnet and plagioclase in the hornfelsic zone, garnet, diopside, scapolite, actinolite, sericite, chlorite, quartz, and calcite in the skarn zone, and, epidote, chlorite, sericite, quartz, and calcite in the late hydrothermal alteration zone. This study shows that the Fe-Cu deposits are of metasomatic pipe type with the later hydrothermal fillings, and the Au-Bi-Cu deposits are of hydrothermal fissure-filling type. The mineralization is probably related to the intrusion of porphyritic granite.

  • PDF

Mineralogy and Geochemistry of Green-colored Cr-bearing Sericite from Hydrothermal Alteration Zone of the Narim Gold Deposit, Korea (나림 금광상의 열수변질대에서 산출되는 녹색크롬-견운모의 광물학적 및 지구화학적 특징)

  • Lee, Hyun Koo;Lee, Chan Hee
    • Economic and Environmental Geology
    • /
    • v.30 no.4
    • /
    • pp.279-289
    • /
    • 1997
  • Dark to pale green-colored, Cr-bearing sericites from hydrothermal alteration zone of the Narim gold deposit were investigated mineralogically and geochemically. The alteration zone is composed mineralogically of quartz, carbonate minerals and green sericite with minor amounts of chlorite, barite and sulfide minerals (pyrite, sphalerite, galena). The zone is enriched in As (967 to 1520 ppm), Cu (31 to 289 ppm), Ni (1027 to 1205 ppm), Pb (0.20 to 1.24 wt.%) and Zn (1.03 to 1.07 wt. %) compared with fresh rocks such as granitic gneiss, porphyritic biotite granite and basic dyke. The Cr, probably the chromophore element, is highly enriched in the alteration zone (1140 to 1500 ppm), host granitic gneiss (1200 ppm) and porphyritic biotite granite (1200 ppm). Occurrence and grain size of sericite are diverse, but most of the Cr-bearing sericites (150 to $200{\mu}m$ long and 20 to $30{\mu}m$ wide) occur along the boundaries between ore veins and host rocks (especially basic dyke and granitic gneiss). X-ray diffraction data of the sericite show its monoclinic form with unit-cell parameters of $a=5.202{\AA}$, $b=8.994{\AA}$, $c=20.103{\AA}$, ${\beta}=95.746^{\circ}$ and $V=935.83{\AA}^3$, which are similar with the normal 2M1-type muscovite. Representative chemical formula of the sericite is ($K_{1.54}Ca_{0.03}Na_{0.01}$)($Al_{3.42}Mg_{0.38}Cr_{0.14}Fe_{0.06}V_{0.02}$)($Si_{6.69}Al_{1.31}$)$O_{20}(OH)_4$. The Cr content increases with decrease of the octahedral Al content, and ranges from 0.36 to 2.58 wt.%. DTA and TG curves of the sericite show endothermic peaks at $342^{\circ}$ to $510^{\circ}$, $716^{\circ}$ to $853^{\circ}$ and $1021^{\circ}C$, which are due to the expulsion of hydroxyl group. The total weight loss by heating is measured to be about 8.8 wt. %, especially at $730^{\circ}C$. Infrared absorption experiments of the sericite show broad absorption band due to the O-H bond stretching vibration near the $3625cm^{-1}$, coupled with the 825 and $750cm^{-1}$ doublet. The vibration bands related with the H-O-Al and Si-O-Al bonds occur at $1030cm^{-1}$ and 500 to $700cm^{-1}$, respectively. Based on paragonite content of the sericite, the formation temperature of the Narim gold deposit is calculated to be $220{\pm}10^{\circ}C$.

  • PDF

Origins and Protective Schemes of Leaking Water into the Buddhist Triad Cave in Gunwi (군위 삼존석굴의 누수 원인과 방지대책)

  • Hwang, Sang Koo
    • Journal of Conservation Science
    • /
    • v.11 no.1 s.14
    • /
    • pp.15-27
    • /
    • 2002
  • The Buddhist Triad Cave in Gunwi, which consists of porphyritic biotite granite, has been deteriorated by a few weatherings. Origin of the weatherings is rain that can be leaked into the cave. Therefore the author investigates a few possible joints and bypasses leaking water, and reinforces any protective schemes for the rain influx. The porphyritic granite around the cave regularly develops two NEE and NWW joint sets. The NEE joint set could be divided into 4 joint zones among which $J_m\;and\;J_3$ may directly affect the leaking water into the cave. A extensional joint, in northern wall of the cave, runs through the $J_m$ joint zone. A small rain could rarely gets through the bypass, but a heavy rain has a good circulation through the joints to be leaked into the cave for a long time because of its long way. Many joints and cracks, in the ceiling near the cave entrance, immediately get to the $J_3$ joint zone, and have a good circulation of a small rain 10 mm. It is the desirable protective schemes that forbid rains to influx along the ranges from L -9 m to +10 m in the $J_m$ joint zone and upper half circle with radius 5 m in the $J_3$ joint zone. The joint apertures should be filled with a petro-epoxy and petro-filler to stop the water flow.

  • PDF

Lithology and Geology of Deokjeok Island, Western Gyeonggi Massif, Central Korea (서부 경기육괴에 위치한 덕적도의 암상과 지질)

  • Aum, Hyun Woo;Kim, Yoonsup;Cheong, Wonseok
    • The Journal of the Petrological Society of Korea
    • /
    • v.22 no.4
    • /
    • pp.263-272
    • /
    • 2013
  • We investigated the lithology and petrography of granites and metasedimentary rocks in Deokjeok Island at the western margin of the Gyeonggi massif. The major lithology comprises the biotite granite that intrudes all other types of rocks. A minor amount of mylonitized porphyritic granite crops out along the southeastern coast. Metasedimentary rocks in the north are further divided into: (1) sheared quartzite-schist to the northeast; and (2) relatively less-deformed, low-grade metasedimentary rocks to the northwest. The former contains quartz grains showing undulatory extinction and subgrain aggregates as well as minor amount of primary chlorite and biotite in the muscovite-rich matrix. Metamorphic condition belongs to the greenschist facies or the biotite zone. On the other hand, the latter unit consists of meta-conglomerate, meta-sandstone, meta-pelite, and black slate. Regardless of the lithology, the intensity of deformation apparently increases eastward to develop the flow banding of quartz in the shear zone.

A Study on the Stone Materials from Gwanbong Seokjoyeoraejwasang and Three-storied Stone Pagoda in Seonbonsa Temple, Mt. Palgongsan, Korea (팔공산 선본사 관봉 석조여래좌상 및 삼층석탑의 석재에 대한 연구)

  • Moon, Sung Woo;Jwa, Yong-Joo
    • Journal of the Korean earth science society
    • /
    • v.35 no.7
    • /
    • pp.554-561
    • /
    • 2014
  • The rock materials from the two stone heritages in the Seonbonsa temple, Gwanbong Seokjoyeoraejwasang (stone Buddha) and three-storied Stone Pagoda, show almost identical petrographic characteristics. They are greyish white porphyritic granites which mainly consist of plagioclase, alkali feldspar, quartz, biotite, hornblende, and chlorite. The rocks from the both heritages are petrographically similar to those from the outcrops of the Palgongsan granite near the temple. Modal compositions exhibit that the rocks from the stone Buddha belong to monzogranite, whereas those from the pagoda and the outcrop near the temple correspond to syeno- to monzo granite. Whole rock magnetic susceptibility data indicate that the rocks from the stone Buddha, the pagoda, and the outcrop have nearly the same susceptibility values ranging 9-16(${\times}10^{-3}\;SI$). Gamma spectrometer data obtained from these rocks also demonstrate the same value range. In conclusion the two stone heritages in the Seonbonsa temple were made of the Palgongsan granite surrounding the temple.

Mineralogy, Genesis and Potential of a New Tertiary Mineralized Zone in Yeongil Area, Korea (영일지역(迎日地域) 제삼기(第三紀) 신광화대(新鑛化帶)의 광물학적(鑛物學的) 특성(特性), 성인(成因) 및 그 잠재성(潛在性)에 관(關)한 연구(硏究))

  • Kim, Soo Jin;Noh, Jin Hwan
    • Economic and Environmental Geology
    • /
    • v.10 no.2
    • /
    • pp.53-66
    • /
    • 1977
  • Epithermal Mn-Au-Ag deposits of subvolcanic type in the Yeongil area discovered by one (Soo Jin Kim) of the present authors was studied with emphasis on their mineralogy, genesis and future potential. Mineralization is genetically related to volcanic activities of the Tertiary Period, which have produced porphyritic rhyolite, granite porphyry, felsitic rhyolite and agglomerate. Ore deposits are closely associated with felsitic rhyolite. They occur as breccia-filling, veins, or networks. Mineralization is characterized by rhodochrosite-sulfide ores of breccia-type in the central zone, and sulfide ores of disseminated type in the outer zone. Sulfides consist mainly of pyrite and marcasite, with minor chalcopyrite, sphalerite, argentian tetrahedrite, galena and gold in the central zone, and of pyrite, marcasite and argentian tetrahedrite in the outer zone. Sulfides are generally not easily identified with naked eye because of their very fine-grained nature. Wall rock alteration zones are also developed around ore deposits over the large area. Occurrence of ore deposits and the nature of mineralization indicate that the uppermost portion of ore deposits are now exposed on the surface, and therefore, the main mineralized zones are expected in depth.

  • PDF

Petrological Characteristics of Two-Mica Granites : Examples from Cheongsan, Inje-Hongcheon, Yeongju and Namwon areas (복운모 화강암의 암석화학적 특징 : 청산, 인제-홍천, 영주 및 남원지역의 예)

  • 좌용주
    • The Journal of the Petrological Society of Korea
    • /
    • v.6 no.3
    • /
    • pp.210-225
    • /
    • 1997
  • From their general natures of peraluminous, S-type and ilmenite-series granites, two-mica granites in the Cheongsan, Inje-Hongcheon, Yeongju and Namwon areas were originated from crust-derived granitic magma and solidified under reducing condition. Each two-mica granite in Inje-Hongcheon and Namwon districts was differentiated from the the residual magma of porphyric biotite granite and high Ti/Mg biotite granite, respectively. The genetic relationships between two-mica granite and porphyritic biotite granite in Chenongsan district and between two-mica granite and biotite granodiorite in Yeongju district are ambiguous. In Namwon district granitic magmas were water-saturated and possible water solubilities in magmas were more than 5.8wt.%. In Yeongju district two-mica granitic magma was nearly water-saturated and showed possible water solubilities between 2.4~5.8wt.%. Two-mica granitic magmas in Cheongsan and Inje-Hongcheon districts were water-undersaturated. Pressure-dependent minimum melt compositions (0.5~2kb) and petrographic textures of two-mica granites in Inje-Hongcheon and Yeongju districts represent that the granites intruded and solidified at shallow level, whereas those in Cheongsan and Namwon districts exhibit relatively deeper level of granitic intrusion (2-3kb). The intersection of granite-solidus/muscovite stability indicates that magmatic primary muscovite can be crystallized from the water-saturated magma above 1.6kb (ca. 6km), but below the pressure muscovite can be formed by the subsolidus reaction. On the other hand, more pressure would be necessary for the crystallization of primary muscovite from the water-undersaturated magma. This pressure condition can explain the occurrence of primary and secondary muscovites from the two-mica granites in the areas considered. The experimental muscovite stability must be cautious of the application to examine the origin of muscovite. The muscovite stability can move toward high temperature field with adding of Ti, Fe and Mg components to the octahedral site of pure muscovite end member.

  • PDF