• Title/Summary/Keyword: porous structure

Search Result 1,203, Processing Time 0.031 seconds

Biodegradation Characteristics of Poly-3-hydroxybutyrate, $Sky-Green^R$ and $Mater-Bi^R$ by Soil Bacteria (토양세균의 Poly-3-hydroxybutyrate,$Sky-Green^R$$Mater-Bi^R$분해 특성)

  • 이애리;김말남
    • Korean Journal of Microbiology
    • /
    • v.36 no.4
    • /
    • pp.299-305
    • /
    • 2000
  • Degradation behavior of the three commercial biodegradable polymers, namely poly(3-hydroxybutyrate) (PHB) Sky-Green/sup R/ (SG) and Mater-Bi/sup R/ (MB) was investigated using bacteria isolated from activated sludge and farm soil. Three PHB degrading bacteria, three SG degrading bacteria and one MB degrading bacteria were isolated. The PHB degrading bacteria were identified to be Flavimonas oryzihabitans, Corynebacterium pseudodiphtheriticum and Micrococcus diversus, while Pseudomonas vesicuraris, Pasteurlla multocida and Flavobacterium odoratum were identified as SG degrading bacteria. As for MB, Pseudomonas vesicuraris was isolated. The shake flask test for 28 days indicated that the rate of biodegradation of PHB, SG and MB in terms of weight loss were about 44∼69% 25∼32% and 29% respectively. The surface morphology of PHB, SG andMB films before and after degradation by microorganisms in an activated sludge soil was observed under SEM, demonstrating that the film surface had a very porous structure, and that microorganisms colonized heavily on the film surface. TOC and pH variation as a result of abiotic hydrolysis, or microbial growth in the absence of the polymers were compared to those due to degradation by F. oryzihabitans. Abiotic hydrolysis of PHB was three times as fast as that of SG and MB. Addition of yeast extract to the basal liquid medium accelerated the biodegradation of the polymers. Biodegradation of PHB was always faster than that of SG and MB irrespectively of the presence of yeast extract in the basal liquid medium.

  • PDF

Effects of Membrane Size and Organic Matter on Membrane Fouling (천연유기물질의 특성과 막의 종류에 따른 막오염 메카니즘 분석)

  • Jung, Chul-Woo;Son, Hee-Jong
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.28 no.10
    • /
    • pp.1046-1054
    • /
    • 2006
  • The raw water DOC contained 39.3% of hydrophilics, 42.9% of hydriophobic, and 17.8% of transphilic. The hydrophobic fraction in this raw water was mostly fulvic acid. Fulvic acid comprised of 62% and the rest was humic acid(38%). There was more carboxylic acid functional group(64%) than phenolic group(36%). HPI-N and HPI-C comprised of 17% and 22% in the hydrophilic portion, respectively. The fouling mechanisms on the membrane surface and into its porous structure were analyzed in terms of several kinetic models. In order to analyze the fouling kinetics, the various kinetic models described in this paper were used to fit the experimental results. The kinetic models and kinetic constants obtained for each operation condition. The permeate flux was rapidly declined by simultaneous pore blocking and cake formation. Also, the permeate flux declined with decreasing internal pore size resulted from organic deposition into the membrane pore. The results of the membrane fouling test using UF membrane according to NOM fractions. HPI-N caused more fouling than HPI-C. Humic acid caused more fouling than fulvic acid probably due to higher adsorption capacity. Since humic acid has higher adsorption capacity than fulvic acid, it would be more adsorbed onto the membrane pores.

A study on the biodegradable novel chitosan nanofiber membrane as a possible tool for guided bone regeneration (키토산 나노 차폐막의 골조직 재생유도 능력에 관한 조직학적 연구)

  • Shin, Seung-Yun;Park, Ho-Nam;Kim, Kyoung-Hwa;Lee, Seung-Jin;Park, Yoon-Jeong;Ku, Young;Rhyu, In-Chul;Han, Soo-Boo;Chung, Chong-Pyoung
    • Journal of Periodontal and Implant Science
    • /
    • v.34 no.3
    • /
    • pp.543-549
    • /
    • 2004
  • Chitosan has been widely researched as bone substitution materials and membranes in orthopedic/periodontal applications. Chitosan nanofiber membrane was fabricated by chitosan nanofiber using electrospinning technique. The structure of the membrane is nonwoven, three-dimensional, porous, and nanoscale fiber-based matrix. The aim of this study was to evaluate the biocompatibility of chitosan nanofiber membrane and to evaluate its capacity of bone regeneration in rabbit calvarial defect. Ten mm diameter round cranial defects were made and covered by 2 kinds of membranes (Gore-Tex membrane, chitosan nanofiber membrane) in rabbits. Animals were sacrificed at 4 weeks after surgery. Decalcified specimens were prepared and observed by microscope. Chitosan nanofiber membrane maintained its shape and space at 4 weeks. No inflammatory cells were seen on the surface of the membrane. In calvarial defects, new bone bridges were formed at all defect areas and fused to original old bone. No distortion and resorption was observed in the grafted chitosan nanofiber membrane. However bone bridge formation and new bone formation at the center of the defect could not be seen in Gore-Tex membranes. It is concluded that the novel membrane made of chitosan nanofiber by electrospinning technique may be used as a possible tool for guided bone regeneration.

Three-Phase Eulerian Computational Fluid Dynamics (CFD) of Air-Water-Oil Separator with Coalescer (유적 합체기가 포함된 공기-물-기름 분리 공정에 대한 3상 Eulerian 전산유체역학)

  • Lim, Young-Il;Le, Thuy T.;Park, Chi-Kyun;Lee, Byung-Don;Kim, Byung-Gook;Lim, Dong-Ha
    • Korean Chemical Engineering Research
    • /
    • v.55 no.2
    • /
    • pp.201-213
    • /
    • 2017
  • Water is removed from crude oil containing water by using oil separator. This study aims to develop a three-dimensional (3D) Eulerian computational fluid dynamics (CFD) model to predict the separation efficiency of air-water-oil separator. In the incompressible, isothermal and unsteady-state CFD model, air is defined as continuous phase, and water and oil are given as dispersed phase. The momentum equation includes the drag force, lift force and resistance force of porous media. The standard k-${\varepsilon}$ model is used for turbulence flow. The exit pressures of water and oil play an important role in determining the liquid level of the oil separator. The exit pressures were identified to be 6.3 kPa and 5.1 kPa for water and oil, respectively, to keep a liquid level of 25 cm at a normal operating condition. The time evolution of volume fractions of air, water and oil was investigated. The settling velocities of water and oil along the longitudinal separator distance were analyzed, when the oil separator reached a steady-state. The oil separation efficiency obtained from the CFD model was 99.85%, which agreed well with experimental data. The relatively simple CFD model can be used for the modification of oil separator structure and finding optimal operating conditions.

Preparation of Composite Nafion/polyphenylene Oxide(PPO) with Hetropoly Acid(HPA) Membranes for Direct Methanol Fuel Cells (헤테로폴리산을 포함한 직접 메탄올 연료전지용 나피온/폴리페닐렌옥사이드 복합막의 제조)

  • Kim, Donghyun;Sauk, Junho;Kim, Hwayong;Lee, Kab Soo;Sung, Joon Yong
    • Korean Chemical Engineering Research
    • /
    • v.44 no.2
    • /
    • pp.187-192
    • /
    • 2006
  • The preparation and characterization of new polymer composite membranes containing polyphenylene oxide (PPO) thin films with hetropoly acid (HPA) are presented. PPO thin films with phosphotungstic acid (PWA) or phosphomolybdic acid (PMA) have been prepared by using the solvent mixture. The PWA and PPO can be blended using the solvent mixture, because PPO and PWA are not soluble in the same solvent. In this study, methanol was used as a solvent dissolving PWA and chloroform was used as a solvent dissolving PPO. PPO-PWA solutions were cast onto a glass plate with uniform thickness. The composite membranes were prepared by casting Nafion mixture on porous PPO-PWA films. The morphology and structure of these PPO-PWA films were observed with scanning electron microscopy (SEM) and energy dispersive spectrometer (EDS). The composite membranes were characterized by measuring their ion conductivity and methanol permeability. The performance was evaluated with composite membranes as electrolytes in fuel cell conditions. The methanol cross-over of composite membranes containing PPO-PWA barrier films in the DMFC reduced by 66%.

Fog Collection/Removal System Using a Moss Filter (이끼필터를 이용한 안개 포집/제거 시스템)

  • Oh, Sunjong;Park, Minyong;Kim, Wandoo;Lim, Hyuneui
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.40 no.7
    • /
    • pp.449-455
    • /
    • 2016
  • Fog causes economic losses in transportation. It also results in health problems when it is combined with air pollutants. Considerable research efforts have focused on developing fog removal systems. However, most systems operate themselves after monitoring the fog. Additionally, continuous energy supply and maintenance are required to retain the fog-removal efficiency of the system. This study included the demonstration of a moss filter (a polyolefin mesh interlaced with moss) as a fog-removal method overcoming the limitations of the fog removal system. Three types of mosses with different surface structures were investigated to elucidate the relation between the moisture absorption rate and the structures. Among the different moss types, Hypopterygium japinicum showed the highest efficiency based on the smallest pore diameter and the largest total pore area. The visibilities with the moss filter and the polyolefin mesh were compared to perform the fog removal tests. The moss filter could provide a cost-effective and eco-friendly fog removal system with sustainability.

Phase Behavior and Morphological Studies of Polysulfone Membranes; The Effect of Alcohols Used as a Non-solvent Coagulant (비용매 알코올 응고조를 이용한 폴리술폰 막의 상전이 거동 및 모폴로지 특성 연구)

  • Park Byung Gil;Kong Sung-Ho;Nam Sang Yong
    • Membrane Journal
    • /
    • v.15 no.4
    • /
    • pp.272-280
    • /
    • 2005
  • In this study, asymmetric polysulfone membranes were prepared by the phase inversion method and the casting solutions were containing N-methyl-2-pyrrolidone (NMP) as a solvent. Deionized water and various alcohols(methanol, ethanol, and propanol) were used as a coagulation medium in preparing asymmetric polysulfone membranes. This study investigates the effect of alcohol coagulants having different solubility parameters as a pore-former on the construction of porous structures and their pure water permeation properties. Asymmetric polysulfone membranes immersed in the pure alcohol coagulation bath solution showed the typical sponge-like structures and the reduced water permeability as compared with those of polysulfone membranes precipitated in the pure water coagulation bath solution. In the water/alcohol mixtures, asymmetric polysulfone membranes showed the finger-like structures with the sponge-like structures. Therefore, the sponge-like structure of polysulfone membrane was formed under the delayed demixing systems while the porosity of membrane was decreased significantly. The water permeability of polysulfone membrane precipitated in the pure water coagulant showed 164 [$L/m^2hr$] at 14.7 psi. In case of polysulfone membranes prepared in the pure methanol and ethanol coagulant, they showed the water permeability of 56 and 30 [$L/m^2hr$], respectively.

Control of Bowing in Free-standing GaN Substrate by Using Selective Etching of N-polar Face (N-polar면의 선택적 에칭 방법을 통한 Free-standing GaN 기판의 Bowing 제어)

  • Gim, Jinwon;Son, Hoki;Lim, Tea-Young;Lee, Mijai;Kim, Jin-Ho;Lee, Young Jin;Jeon, Dae-Woo;Hwang, Jonghee;Lee, Hae-Yong;Yoon, Dae-Ho
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.29 no.1
    • /
    • pp.30-34
    • /
    • 2016
  • In this paper, we report that selective etching on N-polar face by EC (electro-chemical)-etching effect on the reduction of bowing and strain of FS (free-standing)-GaN substrates. We applied the EC-etching to concave and convex type of FS-GaN substrates. After the EC-etching for FS-GaN, nano porous structure was formed on N-polar face of concave and convex type of FS-GaN. Consequently, the bowing in the convex type of FS-GaN substrate was decreased but the bowing in the concave type of FS-GaN substrate was increased. Furthermore, the FWHM (full width at half maximum) of (1 0 2) reflection for the convex type of FS-GaN was significantly decreased from 601 to 259 arcsec. In the case, we confirmed that the EC-etching method was very effective to reduce the bowing in the convex type of FS-GaN and the compressive stress in N-polar face of convex type of FS-GaN was fully released by Raman measurement.

Effects of SIS Sponge and Bone Marrow-Derived Stem Cells on the Osteogenic Differentiation for Tissue Engineered Bone (SIS 스폰지와 골수유래줄기세포를 이용한 조직공학적 골분화 유도)

  • Park Ki Suk;Jin Chae Moon;Yun Sun Jung;Hong Keum Duck;Kim Soon Hee;Kim Moon Suk;Rhee John M.;Khang Gilson;Lee Hai Bang
    • Polymer(Korea)
    • /
    • v.29 no.5
    • /
    • pp.501-507
    • /
    • 2005
  • Small intestinal submucosa (SIS) had been widely used as a biomaterial without immune rejection responses. SIS sponges prepared by crosslinking with 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide hydrochloride (EDC). SIS powders dissolved in $3\%(v/v)$ acetic acid aqueous solution for 48hrs and freeze-dried. EDC solution ($H_2O$ : ethanol = 5 : 95) as a crosslink agent was used in concentration of 100mM. In vitro, rat-BMSCs seeded in SIS sponges and induced the osteogenesis for 28 days. We have characterized the osteogenic potential of rat-BMSCs in SIS sponges by alkaline phosphatase activity(ALP), n assay, SEM and RT-PCR for osteogenic phenotype. In SEM, all morphology of SIS sponges was regular and showed interconnected pore structure. By RT-PCR analysis, we observed type I collagen expression. These results demonstrate osteogenic differentiation of rat-BMSCs. In conclusion, we confirmed that the morphology of surface, cross-section, and side of SIS sponges were highly porous with good interconnections between each pores, which can support the surface of cell growth, proliferation, and differentiation. This result indicates that SIS sponge is useful for osteogenesis of BMSCs.

Effect of Nitrogen Gas Packing and ${\gamma}-Oryzanol$ Treatment on the Shelf Life of Yukwa(Korean Traditional Snack) (질소치환포장 및 ${\gamma}-Oryzanol$ 첨가가 유과의 저장성에 미치는 영향)

  • Park, Yoon-Jung;Chun, Hyang-Sook;Kim, Sang-Sook;Lee, Jong-Mee;Kim, Kyu-Heun
    • Korean Journal of Food Science and Technology
    • /
    • v.32 no.2
    • /
    • pp.317-322
    • /
    • 2000
  • This study examined the effect of nitrogen$(N_2)$ gas packing and ${\gamma}-oryzanol$ treatment on the shelf life of Yukwa(Korean traditional snack). Yukwa were stored with $N_2$ gas packing(AN), $N_2$ gas packing with ${\gamma}-oryzanol$ treatment(ANA), and PE film packing with air(PE) for 20 days at $60^{\circ}C$. They were evaluated by POV, AV, conjugated diene, hexanal, color and sensory characteristics. The POV, AV and conjugated diene content increased abruptly in PE and AN, but increased slowly in ANA with prolonged storage. Higher sensory scores for Yukwa were found in ANA as compared to those in PE and AN. Hexanal content, yellowness and redness in AN were higher than those in ANA and PE. The moisture content, which is supposed to be related with browning of Yukwa, was 3 times higher in AN than that in PE. Oxygen content of each Yukwa pack, even in $N_2$ gas packing, increased remarkably as storage period increased because their highly porous, fragile and syrup-coated structure resulted in incomplete degassing before $N_2$ gas was flushed into package. Consequently, $N_2$ gas packing was inefficient, but $N_2$ gas packing combined with antioxidant(such as ${\gamma}-oryzanol$) treatment was effective for the extension of shelf life of Yukwa.

  • PDF