• Title/Summary/Keyword: porous replamineform hydroxyapatite

Search Result 4, Processing Time 0.019 seconds

THE EFFECTS OF RESORBABLE MEMBRANE IN CONJUNCTION WITH OSSEOUS GRAFTS ON THE PERIODONTAL HEALING IN DOGS (흡수성차단막과 골이식재가 성견 치주질환 치조골재생에 미치는 영향)

  • Kim, Chong-Kwan
    • Journal of Periodontal and Implant Science
    • /
    • v.24 no.1
    • /
    • pp.51-63
    • /
    • 1994
  • There has been many attempts to develop a method that can regenerate periodontal tissues that were lost due to periodontal diseasd, but none of them was completely successful. This study was designed to investigate the healing and regeneration of periodontal tissue when bone substitutes such as porous replamineform hydroxyapatite and porous resorbable calcium carbonate were used in combination with oxidized cellulose membrane and collagen absorbable hemostat, compared to a control where only oxidized cellulose membrane or collagen absorbable hemostat were used. Chronic periodontitis was induced on mandibular premolars of and adult dog by placing orthodontic elastic ligatures for 10 weeks. After flap operation, the control group were received oxidized cellulose membrane (control- I )or collagen absorbable hemostat (control- II) only, while one experimental group was given either porous replamineform hydroxyapatite or porous resorbable calcium carbonate in addition to oxidized cellulose membrane (Experimental I-A, I-B), and another experimental group was treated by using either porous replamineform hydroxyapatite or porous resorbable calcium carbonate in addition to collagen absorbable hemostat. (Experimental II-A, II-B) After 56 weeks, healing was histologically analyzed with the following results. 1. Apical migration of junctional epithelium was observed only in areas coronal to the notch for both control and experimental group. 2. Inflammatory cell infiltration was not observed in any groups. 3. Oxidized cellulose membrane and collagen absorbable hemostat were completely resorbed. 4. Newly-formed cementum was observed up to the level where junctional epithelium was located, for both control and experimental groups. 5. Bone formation was limited of the middle portion of the notch in the control group, where as experimental groups showed bone formation up to the level of implant materials coronal to the notch. 6. Minute resorption of apically located portions of implanted materials was observed in experimental group I-B and II-B only.

  • PDF

The Effects of Porous Resorbable Calcium Carbonate and Porous Replamineform Hydroxyapatite on the regeneration of the alveolar bone in the Periodontally involved extraction sockets in dogs. (Porous Resorbable Calcium Carbonate와 Porous Replamireform Hydroxyapatite가 성견치주질환 이환 발치와내 이식된 치근과 발치와 치조골 재생에 미치는 영향)

  • Kim, Chong-Kwan;Choi, Seong-Ho
    • Journal of Periodontal and Implant Science
    • /
    • v.26 no.2
    • /
    • pp.334-349
    • /
    • 1996
  • Regeneration of the periodontal tissue destroyed by periodontal disease is one of the final goals of periodontal therapy. In the past few years, periodontists have used various alloplastic grafting materials in an attempt to regenerate bone lost from periodontal disease. These materials have used widely because they have shown to be nontoxic, biologically compatible with surrounding host tissue and chemically similar to bone. The purpose of this study was to investigate the effect of Porous Resorbable Calcium Carbonate and Porous Replamineform Hydroxyapatite on the regeneration of the alveolar bone and the healing of roots transplanted into the periodontally diseased extraction sockets of dogs. The experimental chronic periodontitis was induced by elastic ligatures on the 2nd and 3rd mandibular premolars of 2 adult dogs for 8weeks after surgically creating periodontal defect. The extracted root were split in half along the long-axis, and the extend of plaque exposure was marked on the root surfaces with burs. The roots were inserted in extraction sockets with Porous Resorbable Calcium Carbonate(PRCC) in left side and with Porous Replaminefrom Hydroxyapatite(PRH) in right side. The flaps were sutured to cover the sockets completely. The animals were sacrificed after 12 weeks of healing, and the specimens were examined histologically. The results were as follows: 1. No inflammatory reactions were observed in either groups. 2. Hoot resorption was observed in both groups while the general outline of the roots were maintained. 3. PRCC was almost completely resorbed and replaced with new bone, while R.H.A. was not resorbed & remained encased in newly-formed C-T and alveolar bone. 4. PRH was encapsulated with alveolar bone which has been deposited from apical & lateral area of the sockets, while the coronal portion of the sockets were filled with C-T. 5. In both groups, the resorbed portions of the roots were replaced with new bone. These results suggest that either PRCC or PRH may not interfere with bone formation or healing in extraction sockets, and in some degree, retard the root resorption. Because the roots maintained in anatomy, we think that graft materials prevent the root resorption.

  • PDF

THE EFFECTS OF POROUS REPLAMINEFORM HYDROXYAPATITE AND DECALCIFIED FREEZE DRIED BONE ON THE REGENERATION OF THE ALVEOLAR BONE IN THE PERIODONTALLY INVOLVED EXTRACTION SOCKETS OF DOGS (Porous Replamineform Hydroxyapatite와 Decalcified Freeze Dried Bone이 치주질환 이환 발치와의 치유에 미치는 영향)

  • Son, Hyo-Sang;Cho, Kyoo-Sung;Chai, Jung-Kiu;Kim, Chong-Kwon
    • Journal of Periodontal and Implant Science
    • /
    • v.23 no.2
    • /
    • pp.315-330
    • /
    • 1993
  • The ultimate goal of periodontal treatment has been to facilitate regeneration of diseased periodontal tissues, destroyed by inflammatory periodontal disease. Various implant materials have been used to restore the alveolar bone defects. Of the various materials, porous replamineform hydroxyapatite (PHA) has good biocompatibility when placed in a bone tissue, and maintains alveolar ridge for a long period. Decalcified freeze dried bone(DFDB) has been widely used in alveolar bone defects because of its conformity and high osteogenic potential. The purpose of this study was to evaluate the effects of PHA and DFDB on the regeneration of the alveolar bone between fresh extraction sockets and periodontally involved extraction sockets. Experimental periodontitis was induced by the ligation of orthodontic elastic threads after surgically creating periodontal defects on the premolars on the right side of 2 adult dogs for 8 weeks. Following the extraction of each tooth, PHA and DFDB were inserted in the extraction sockets. In control group 1, PHA was inserted in the fresh extraction sockets, and in control group 2, DFDB was inserted. In experimental group 1, PHA was inserted in the periodontally involved extraction sockets, and in experimental group 2, DFDB was inserted. After 20 weeks, the specimens were prepared and stained with Hematoxylin-Eosin stain for the light microscopic evaluation. The results of this study were as follows. 1. No inflammation associated with implant materials was evident in any of the groups. 2. DFDB was completely resorbed, PHA was remained in the extraction sockets in the control and experimental groups. 3. In control group 1 and experimental group 1, extraction sockets were not completely filled with new bone. However, original forms of alveolar crests were maintained in control group 2 and experimental group 2. 4. In control group 1 and exprimental group 1, PHA particles surrounded with many giant cells were well tolerated by the fibrous connective tissues in the coronal part of the socket, In the inferior part of the socket, PHA particles were incorporated into the new bone. In both control group 2 and experimental group 2, DFDB was replaced by newly remodeled bone. 5. No differences of degree of new bone formation were evident between control and experimental groups.

  • PDF

Effects Of Cultured Bone Cell On The Regeneration Of Alveolar Bone (배양골세포 이식이 치조골재생에 미치는 영향)

  • Jeong, Soon-Joon;Herr, Yeek;Park, Joon-Bong;Lee, Man-Sup;Kwon, Young-Hyuk
    • Journal of Periodontal and Implant Science
    • /
    • v.26 no.1
    • /
    • pp.1-26
    • /
    • 1996
  • This study was performed to estimate the effects of cultured bone cell inoculated on porous type hydroxyaptite for the regeneration of the artificial alveolar bone defect. In this experiment 3 beagle dogs were used, and each of them were divided into right and left mandible. Every surgical intervention were performed under the general anesthesia by using with intravenous injection of Pentobarbital sodium(30mg/Kg). To reduce the gingival bleeding during surgery, operative site was injected with Lidocaine hydrochloride(l:80,000 Epinephrine) as local anesthesia. After surgery experimental animal were feeded with soft dietl Mighty dog, Frisies Co., U.S.A.) for 1 weeks to avoid irritaion to soft tissue by food. 2 months before surgery both side of mandibular 1st premolar were extracted and bone chips from mandibular body were obtained from all animals. Bone cells were cultured from bone chips obtained from mandible with Dulbecco's Modified Essential Medium contained with 10% Fetal Bovine Serum under the conventional conditions. Porous type hydroxyapatite were immerse into the high concentrated cell suspension solution, and put 4 hours for attachin the cells on the surface of hydroxyapatite. Graft material were inserted on the artificial bone defect after 3 days of culture. Before insertion of cellinoculated graft material, scanning electronic microscopic observation were performed to confirm the attachment and spreading of cell on the hydroxyapatite surface. 3 artificial bone defects were made with bone trephine drill on the both side of mandible of the experimental animal. First defect was designed without insertion of graft material as negative control, second was filled with porous replamineform hydroxyapatite inoculated with cultured bone marrow cells as expermiental site, and third was filled with graft materials only as positive control. The size of every artificial bone defect was 3mm in diameter and 3mm in depth. After the every surgical intervention of animals, oral hygiene program were performed with 1.0% chlorhexidine digluconate. All of the animals were sacrificed at 2, 4, 6 weeks after surgery. For obtaining histological section, tissus were fixed in 10% Buffered formalin and decalcified with Planko - Rycho Solution for 72hr. Tissue embeding was performed in paraffin and cut parallel to the surface of mandibular body. Section in 8um thickness of tissue was done and stained with Hematoxylin - Eosin. All the specimens were observed under the light microscopy. The following results were obtained : 1. In the case of control site which has no graft material, less inflammatory cell infiltration and rapid new bone forming tendency were revealed compared with experimental groups. But bone surface were observed depression pattern on defect area because of soft tissue invasion into the artificial bone defect during the experimental period. 2. In the porous hydroxyapatite only group, inflammatory cell infiltration was prominet and dense connective tissue were encapsulated around grafted materials. osteoblastic activity in the early stage after surgery was low to compared with grafted with bone cells. 3. In the case of porous hydroxyapatite inoculated with bone cell, less inflammatory cell infiltration and rapid new bone formation activity was revealed than hydroxyapatite only group. Active new bone formation were observed in the early stage of control group. 4. The origin of new bone forming was revealed not from the center of defected area but from the surface of preexisting bony wall on every specimen. 5. In this experiment, osteoclastic cell was not found around grafted materials, and fibrovascular invasion into regions with no noticeable foreign body reaction. Conclusively, the cultured bone cell inoculated onto the porous hydroxyapatite may have an important role of regeneration of artificial bone defects of alveolar bone.

  • PDF