• 제목/요약/키워드: porous ceramic beads

검색결과 11건 처리시간 0.021초

Processing of Porous Ceramics with a Cellular Structure Using Polymer Beads

  • Ha, Jung-Soo;Kim, Chang-Sam
    • 한국세라믹학회지
    • /
    • 제40권12호
    • /
    • pp.1159-1164
    • /
    • 2003
  • Two processing routes (i.e., the gel casting and polymer preform routes) using polymer beads were studied to fabricate porous ceramics with a cellular structure. The gel casting route, comprising the gel casting of a ceramic slurry mixed with polymer beads, was found to be inadequate to produce porous ceramic bodies with a interconnected pore structure, due to complete coating of the slurry on the polymer beads, which left just isolated pores in the final sintered bodies. The polymer preform route, involving the infiltration of a polymer beads preform with the ceramic slurry, successfully produced porous ceramics with a highly interconnected network of spherical pores. The pore size of 250-300 $\mu\textrm{m}$ was demonstrated and the porosity ranged from 82 to 86%. This process is advantageous to control the pore size because it is determined by the sizes of polymer beads used. Another feature is the avoidance of hollow skeleton, giving a high strength.

Ag 담지 다공성 세라믹 비드 제조 및 항균 특성 (Preparation of Ag-impregnated Porous Ceramic Beads and Antibacterial Properties)

  • 서원학;한요섭;정영;박재구
    • 대한환경공학회지
    • /
    • 제27권5호
    • /
    • pp.549-554
    • /
    • 2005
  • 골격 구조를 가진 다공성 세라믹 비드에 질산은 용액을 이용하여 Ag를 담지 하였으며, Ag 담지된 비드의 대장균, 포도상구균에 대한 항균 특성을 평가하였다. 또한, 상용화된 Ag-활성탄과 항균 특성에 대해 비교실험도 진행하였다. 질산은 용액의 농도가 높을수록, 비드의 내 외부 표면의 Ag 함량이 증가하였으며, 담지된 Ag 입자의 크기는 $0.5{\sim}2.0\;{\mu}m$ 범위로 나타났다. Ag 담지된 비드의 항균 특성은 다음과 같이 관찰되었다 : i) 질산은 용액 농도 및 반응시간이 증가할수록 높은 활성을 나타내었다. ii) 포도상구균에 비해 대장균의 경우 더 좋은 제거율을 나타내었다.

Urea-SCR 시스템에서의 Cu-ZSM5/알루미나 비드 촉매필터의 De-NOx 특성 (De-NOx Characteristics for Cu-ZSM5/Alumina Beads Catalyst Filter in Urea-SCR System)

  • 장영상;신영섭;이병준;박재구
    • 한국자동차공학회논문집
    • /
    • 제16권5호
    • /
    • pp.60-67
    • /
    • 2008
  • The catalytic filter of Cu-ZSM5/alumina beads was considered to reduce NOx in the urea SCR system. Catalytic support of porous alumina beads with mean pore size $130{\mu}m$ and porosity $75{\sim}83%$ were prepared using foaming and gel-casting method. The Cu-ZSM5 catalysts were coated on the supporting alumina beads using $Cu(NO_3)_2$ by ion exchange method. After a washcoating process was applied to coat 10w% Cu-ZSM5 on porous alumina bead, coating layer was estimated $20{\mu}m$ in thickness. The characterization and the feasibility as a catalytic supports were investigated. And the NOx conversion test in Cu-ZSM5/Alumina Beads filter system was conducted by using Urea as reductants under laboratory test. The NOx conversion was increased as size and porosity of beads and observed more than 95% excellent NOx conversion above $300^{\circ}C$.

Highly-closed/-Open Porous Ceramics with Micro-Beads by Direct Foaming

  • Jang, Woo Young;Seo, Dong Nam;Park, Jung Gyu;Kim, Hyung Tae;Lee, Sung Min;Kim, Suk Young;Kim, Ik Jin
    • 한국세라믹학회지
    • /
    • 제53권6호
    • /
    • pp.604-609
    • /
    • 2016
  • This study reports on wet-foam stability with respect to porous ceramics from a particle-stabilized colloidal suspension that is achieved through the addition of polymethyl methacrylate (PMMA) using a wet process. To stabilize the wet foam, an initial colloidal suspension of $Al_2O_3$ was partially hydrophobized by the surfactant propyl gallate (2 wt.%) and $SiO_2$ was added as a stabilizer. The influence of the PMMA content on the bubble size, pore size, and pore distribution in terms of the contact angle, surface tension, adsorption free energy, and Laplace pressure are described in this paper. The results show a wet-foam stability of more than 83%, which corresponds to a particle free energy of $2.7{\times}10^{-12}J$ and a pressure difference of 61.1 mPa for colloidal particles with 20 wt.% of PMMA beads. It was possible to control the uniform distribution of the open/closed pores by increasing the PMMA content and by adding thick struts, leading to the achievement of a higher-stability wet foam for use in porous ceramics.

광합성세균에 의한 미생물막의 형성

  • 오광근;이철우;전영중;이재홍
    • 한국미생물·생명공학회지
    • /
    • 제24권6호
    • /
    • pp.733-737
    • /
    • 1996
  • The formation of microbial films(biofilm) by a non-sulfur phototrophic bacteria, Rhodopseudomonas capsulata, on inorganic media was studied. Porous ceramic beads(PCB) were superior to other immobilizing media for the biofilm formation in a packed-bed reactor. It was found that the formation of microbial films favored a lower hydraulic retention time, showing a higher ratio of cells attatched to the media to those suspended in the solution. The cell concentration in the biofilm reactor was as high as 11,400mg/l, which is 8-folds of the cell concentration in an ordinary suspended treatment. It was observed that the formation of micribial film by R. capsulata followed a general serial process of cell attachment, microcolony formation, and biofilm formation. The microbial films thus formed was very stable even for an extremely high volumetric BOD loading rate of 15gBOD/l day. The scanning electron micrographs of the microbial films showed that the cells were attached to both the surface and pores of the media.

  • PDF

Porous bioactive glass ceramics for bone-tissue regeneration

  • 윤희숙;김승언
    • 한국재료학회:학술대회논문집
    • /
    • 한국재료학회 2009년도 추계학술발표대회
    • /
    • pp.7.2-7.2
    • /
    • 2009
  • Nanoporous bioactive glass(NBG) ceramic with well interconnected pore structures were fabricated bytriblock copolymer templating and sol-gel techniques. Hierarchically porous BGbeads were also successfully synthesized by controlling the condition of solvent.The beads have hierarchically nano- and macro-pore structure with a sizesbetween several tens nanometers and several hundred micrometers. Both NBG andBG beads show superior bone-forming bioactivity and good in vitrobiodegradability. Biocompatibility both in vitro and in vivo were examed andwas revealed that it largely relies on the pore morphology as well ascomposition. Our synthetic process can be adapted for the purpose of preparingvarious bioceramics, which have excellent potential applications in the fieldof biomaterials such as tissue engineering and drug storage.

  • PDF

Influences of heating processes on properties and microstructure of porous CeO2 beads as a surrogate for nuclear fuels fabricated by a microfluidic sol-gel process

  • Song, Tong;Guo, Lin;Chen, Ming;Chang, Zhen-Qi
    • Nuclear Engineering and Technology
    • /
    • 제51권1호
    • /
    • pp.257-262
    • /
    • 2019
  • The control of microstructure is critical for the porous fuel particles used for infiltrating actinide nuclides. This study concerns the effect of heating processes on properties and microstructure of the fuel particles. The uniform gel precursor beads were synthesized by a microfluidic sol-gel process and then the porous $CeO_2$ microspheres, as a surrogate for the ceramic nuclear fuel particles, were obtained by heating treatment of the gel precursors. The fabricated $CeO_2$ microspheres have a narrow size distribution and good sphericity due to the feature of microfluidics. The effects of heating processes parameters, such as heating mode and peak temperatures on the properties of microspheres were studied in detail. An optimized heating mode and the peak temperature of $650^{\circ}C$ were selected to produce porous $CeO_2$ microspheres. The optimized heating mode can avoid the appearance of broken or crack microspheres in the heating process, and as-prepared porous microspheres were of suitable pore size distribution and pore volume for loading minor actinide (MA) solution by an infiltration method that is used for fabrication of MA-bearing nuclear fuel beads. After the infiltration process, $1000^{\circ}C$ was selected as the final temperature to improve the compressive strength of microspheres.

Three Dimensionally Ordered Microstructure of Polycrystalline TiO2 Ceramics with Micro/meso Porosity

  • Chang, Myung Chul
    • 한국세라믹학회지
    • /
    • 제53권2호
    • /
    • pp.227-233
    • /
    • 2016
  • In order to make a highly ordered three-dimensional porous structure of titania ceramics, porogen beads of PS [Polystyrene] and PMMA [poly(methylmetacrylate)] were prepared by emulsion polymerization using styrene monomer and methyl methacrylate monomer, respectively. The uniform beads of PS or PMMA latex were closely packed by centrifugation as a porogen template for the infiltration of titanium butoxide solution. The mixed compound of PS or PMMA with titanium butoxide was dried and the dry compacts were calcined at $450^{\circ}C-750^{\circ}C$ according to the firing schedule to prepare micro- and meso- structures of polycrystalline titania with monodispersed porosity. Inorganic frameworks composed of $TiO_2$ were formed and showed a three Dimensionally Ordered Microstructure [3DOM] of $TiO_2$ ceramics. The pulverized particles of the $TiO_2$ ceramic skeleton were characterized using XRD analysis. A monodispersed crystalline micro-structure with micro/meso porosity was observed by FE-SEM with EDX analysis. The 3DOM $TiO_2$ skeleton showed opalescent color tuning according to the direction of light.

Three Dimensionally Ordered Microstructure of Polycrystalline Zirconia Ceramics with Micro-Porosity

  • Chang, Myung Chul
    • 한국세라믹학회지
    • /
    • 제53권1호
    • /
    • pp.50-55
    • /
    • 2016
  • In order to make a highly ordered three-dimensionally macro-porous structure of zirconia ceramics, porogen precursors PMMA beads were prepared by emulsion polymerization using acrylic monomer. The monodisperse PMMA latex beads were closely packed by centrifugation as a porogen template for the infiltration of zirconium acetate solution. The mixed compound of PMMA and zirconium acetate was dried. According to the firing schedule, dry compacts of PMMA and zirconium acetate were calcined at $475^{\circ}C$ to obtain micro-, macro-, and meso- structures of polycrystalline zirconia with monodispersed porosity. Inorganic frameworks composed of $ZrO_2$ were formed and showed a three Dimensionally Ordered Microstructure [3DOM] of $ZrO_2$ ceramics. The obtained $ZrO_2$ skeleton was calcined at $710^{\circ}C$. The 3DOM $ZrO_2$ skeleton showed color tuning in solutions such as deionized [DI] $H_2O$ and/or methanol. The monodispersed crystalline micro-structure with micro/meso porosity was observed by FE-SEM.

광미(鑛尾)를 활용(活用)한 다공성 세라믹 비드 제조(製造) 및 촉매(觸媒) 변환기(變換機)로의 응용(應用) (Preparation of Porous Ceramic Bead using Mine Tailings and Its Applications to Catalytic Converter)

  • 서준형;김성민;한요셉;김유득;이준한;박재구
    • 자원리싸이클링
    • /
    • 제22권4호
    • /
    • pp.38-45
    • /
    • 2013
  • 광미를 이용하여 다공성 세라믹 비드를 제조한 후 NOx/SOx 제거용 촉매 변환기로 응용하였다. 변환기 표면에 코팅처리된 촉매 지지체는 합성한 메조포러스 실리카(SBA-15)를 사용하였다. 다공성 세라믹 변환기의 내부 구조는 기공과 기공이 서로 연결되어 있는 3차원 망상구조이며 기공율은 80%로 나타났다. 또한, 촉매 변환기의 비표면적은 SBA-15 코팅 전 0.8 $m^2/g$에서 코팅처리 후에는 55 $m^2/g$으로 크게 증가하였다. NOx/SOx 제거 실험은 다공성 세라믹 촉매 변환기 표면에 $V_2O_5$$V_2O_5$, CuO를 함께 담지한 것으로 실시하였다. NOx 전환율은 $V_2O_5$/CuO 변환기가 $V_2O_5$ 변환기에 비해 약 10% 정도 높게 나타났다. 또한, $V_2O_5$/CuO 변환기는 반응온도 $350^{\circ}C$, 공간속도 10000 $h^{-1}$, 산소농도 5%에서 NOx 95%, SOx 90% 이상의 전환율을 각각 나타냈다.