• Title/Summary/Keyword: porous alumina membrane

Search Result 48, Processing Time 0.022 seconds

Anodic Oxide Membrane Formation of Hexagonal Pore Arrarys on Aluminium (다공성 알루미나 박막의 나노 스케일 구조 제어)

  • Jung, Kyung-Han;Shin, Hoon-Kyu;Kwon, Young-Soo
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2002.07b
    • /
    • pp.830-833
    • /
    • 2002
  • 최근 나노 구조 (nano structure)를 만들기 위한 시도 중 하나로서 스스로 조직화(self organization)하여 나노 구조를 형성하는 물질을 나노 소자 제작을 위한 형틀 (template)로 이용하려는 시도가 활발히 진행되고 있다. 이러한 물질로서 주목을 받고있는 것 중 하나가 전해질 용액에서 알루미늄을 양극산화(anodization) 시켰을 때 형성되는 다공성 알루미나 박막이다. 본 연구에서는 고 순도 알루미늄을 기계적으로 연마(mechanical polishing)하고 공기 분위기에서 어닐링 (annealing)하여 알루미늄을 재결정화(recrystallization) 시키고 인가 전압이 40 V인 정 전압하에서 0.3 M의 수산(oxalic acid)을 전해질로 사용하면서 양극산화를 수행하여 평균 직경이 65 nm인 고도로 배열된 육방밀집구조의 나노 다공성 박막을 제작하였다. 또한 같은 방향의 육방밀집 배열은 크기가 수 ${\mu}m$인 영역(grain)을 형성하고 있었으며, 평균적인 pore의 밀도는 $1.1{\times}10^{10}/cm^2$였다.

  • PDF

Development of Ceramic Composite Membranes for Gas Separation: II. Preparation and Coating Characteristics of Nanoparticulate $TiO_2$ Sols (기체분리용 세라믹 복합분리막의 개발: II. 극미세 입자 $TiO_2$ 졸의 제조 및 코팅 특성)

  • 현상훈;박준수;최세영
    • Journal of the Korean Ceramic Society
    • /
    • v.29 no.9
    • /
    • pp.739-749
    • /
    • 1992
  • The sols prepared by dialyzing solutions, in which the hydrolyzed precipitates of TEOT or directly Ti(OC3H7)4 were resolved, were the nanoparticulate sol with the average particle size less than 7 nm and the anatase crystal phase. In the pH range of 1.5 to 2.9, the particle size of the nanoparticulate TiO2 sols (0.09 mol/ι) increased gradually upto 15 nm~26nm with the increase of pH in the initial aging state but the sols were transparent all the time, and stable without growin any more after 30 days. When the slipcasted porous alumina tubes were coated by the sol-gel dipping method, the minimum particle size and the aging time for forming the coated gel layer at the given pH were optimized. For obtaining the very thin crack-free and reproducible membrane coating, the use of a nanoparticulate TiO2 sol (0.09 mol/ι) aged for about 30 dyas at pH=2.0 was found to be the best.

  • PDF

Fabrication and Magnetic Properties of Co Nanostructures in AAO Membranes

  • Jung, J.S.;Malkinski, L.;Lim, J.H.;Yu, M.;O'Connor, C.J.;Lee, H.O.;Kim, E.M.
    • Bulletin of the Korean Chemical Society
    • /
    • v.29 no.4
    • /
    • pp.758-760
    • /
    • 2008
  • Nanoporous AAO (Anodic Aluminum Oxide) membranes have many advantages as a template for variety of magnetic materials. Materials can be embedded into the pores by electrodeposition, sputtering or magnetic-field-assisted infiltration of magnetic nanoparticles. This work focuses on the fabrication of the magnetic structures in the AAO templates by electrodeposition. Our method allows the controlled growth of Co nanostructures within the porous alumina membrane in the form of dots, rods and long wires. The shape of Co nanostructures has been investigated by field emission scanning electron microscope (FESEM). The magnetic hysteresis loops of Co nanostructures were measured using SQUID at 5 K and 300 K. The magnetic properties of the Co nanostructures are proportional to their aspect ratios and can be controlled by changing the aspect ratios.

Fabrication of $TiO_2-CeO_2$ Composite Membranes with Thermal Stability

  • Bae, Dong-Sik;Han, Kyong-Sop;Park, Sang-Hael
    • The Korean Journal of Ceramics
    • /
    • v.1 no.4
    • /
    • pp.219-223
    • /
    • 1995
  • Ceramic membranes of the supported $TiO_2-CeO_2$ were prepared by dip-coating method on an $\alpha-Al_2O_3$ porous substrate. The mean pore diameter of an alumina support was 0.125 um. The mean particle diameter of $TiO_2-CeO_2$ top layer varied with firing temperature and ranged from 20 to 85 nm. The thermal stability of the composite membranes was studied from their surface microstructure after calcination at $600-900^{\circ}C$. The supported $TiO_2-CeO_2$ composite membranes exhibited much higher heat resistance than the $TiO_2$ membrane.

  • PDF

Effects of Substrates on Nanofiltration Characteristics of Multilayer Polyelectrolyte Membranes (다층 고분자 전해질 막의 나노여과 특성에 미치는 지지체의 영향)

  • Hong, Seong-Uk
    • Membrane Journal
    • /
    • v.18 no.2
    • /
    • pp.185-190
    • /
    • 2008
  • In a previous study, we probed the potential of poly(styrene sulfonate) (PSS)/poly(diallyldimethylammonium chloride) (PDADMAC) nanofiltration (NF) membranes for the separation of monovalent anions, with an emphasis on the selective rejection of $F^-$. Remarkably, deposition of $(PSS/PBADMAC)_4PSS$ films on porous alumina supports yielded membranes that exhibited $Cl^-/F^-$ selectivity > 3 with minimal $Cl^-$ rejection, and a solution flux of $3.5m^3/m^2$-day at 4.8 bar. When the number of PSS/PDADMAC bilayers was increased from 4.5 to 5.5, however, $F^-$ rejection decreased from 73% to 50% and $Cl^-/F^-$ selectivity dropped to 1.9. Addition of another bilayer to form $(PSS/PDADMAC)_6$ PSS films resulted in a significant increase in $Cl^-$ rejection to give essentially no $Cl^-/F^-$ selectivity. The decrease of selectivity with deposition of more than 4.5 bilayers was not expected and it was unclear whether this characteristic was substrate independent. In this study, to investigate the effect of substrates on NF performance of multilayer polyelectrolyte membranes, PSS/PDADMAC films were deposited on 50 kDa polyethersulfone (PES) ultrafiltration supports instead of porous alumina supports. The results indicate that, although fluoride rejection and the number of bilayers at which a maximum $F^-$ rejection occurs are different, the trend is similar for both types of substrates. Therefore, we can conclude that the M: characteristics of multilayer polyelectrolyte membranes may be substrate independent.

Preparation of Nanoporous Ceramic Membranes by Sol-gel Method and Characterization of Gas Permeation (졸-겔법에 의한 나노기공성 세라믹 막의 제조 및 기체투과 특성)

  • Lee, Yong-Taek;Choi, Ga-Young;Han, Hyuk-Hee
    • Membrane Journal
    • /
    • v.18 no.2
    • /
    • pp.176-184
    • /
    • 2008
  • Nano-porous ceramic membranes was synthesized by the sol-gel method. Gas permeation of hydrogen and nitrogen was determined by single composition gas. Pore size $0.1{\mu}m$ and porosity 32% of flat type ${\alpha}-Al_2O_3$ substrate was manufactured. An intermediate ${\gamma}-Al_2O_3$ layer with pore size of 4 nm was formed by dip-coating. Polymeric silica sol was synthesized by acid catalyzed hydrolysis and condensation of tetra-ethyl-ortho-silicate. Supported membranes on alumina were prepared by dipping and calcining. He, $N_2$ permeation experiments with nanoporous sol-gel modified supported ceramic membranes were peformed to determine the gas transport characteristics. $He/N_2$ permselectivity around $100{\sim}160$ and helium permeation in the order of $10^{-7}mol/m^2{\cdot}s{\cdot}Pa$ were measured in the temperature range of $303{\sim}363K$.

Pervaporation of Aqueous iso-Propyl Alcohol Solution using NaA Zeolite Membrane (이소프로필 알코올 수용액의 NaA 제올라이트 분리막을 이용한 투과증발)

  • Lee Yong-Taek;Lee Hye-Ryeon;Ahn Hyo-Seong;Park In-Jun;Lee Soo-Bok
    • Membrane Journal
    • /
    • v.16 no.1
    • /
    • pp.25-30
    • /
    • 2006
  • The NaA zeolite membrane was synthesized on the surface of a porous ${\alpha}$-alumina support from the reaction solution composed of 1Si : 1Na : 4Na $6H_{2}O$. The pervaporation performance of the synthesized NaA zeolite membrane was investigated for the iso-propyl alcohol (IPA) aqueous solution according to the different feed concentration and the different operating temperature. The total flux decreases by increasing the feed IPA concentration and increases by increasing the temperature. The total flux was about $4.0{\times}10^3g/m^2\;hr\;at\;60^{\circ}C$ and 0.6 mole fraction of IPA and the separation factor was $1.8{\times}10^7\;at\;60^{\circ}C$ and 0.8 mole fraction of IPA. The separation performance of water through the NaA membrane was found to be superior to that obtainable with a distillation process just by comparison of the vapor-liquid equilibrium data.

Luminous Characteristics of Transparent Field Emitters Produced by Using Ultra-thin Films of Single Walled Carbon Nanotubes

  • Jang, Eun-Soo;Goak, Jeung-Choon;Lee, Han-Sung;Lee, Seung-Ho;Lee, Nae-Sung
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2009.05a
    • /
    • pp.31.1-31.1
    • /
    • 2009
  • Carbon nanotubes (CNTs) are attractive material because of their superior electrical, mechanical, and chemical properties. Furthermore, their geometric features such as a large aspect ratio and a small radius of curvature at tip make them ideal for low-voltage field emission devices including backlight units of liquid crystal display, lighting lamps, X-ray source, microwave amplifiers, electron microscopes, etc. In field emission devices for display applications, the phosphor anode is positioned against the CNT emitters. In most case, light generated from the phosphor by electron bombardment passes through the anode front plate to reach observers. However, light is produced in a narrow depth of the surface of the phosphor layer because phosphor particles are big as much as several micrometers, which means that it is necessary to transmit through the phosphor layer. Hence, a drop of light intensity is unavoidable during this process. In this study, we fabricated a transparent cathode back plate by depositing an ultra-thin film of single walled CNTs (SWCNTs) on an indium tin oxide (ITO)-coated glass substrate. Two types of phosphor anode plates were employed to our transparent cathode back plate: One is an ITO glass substrate with a phosphor layer and the other is a Cr-coated glass substrate with phosphor layer. For the former case, light was radiated from both the front and the back sides, where luminance on the back was ~30% higher than that on the front in our experiments. For the other case, however, light was emitted only from the cathode back side as the Cr layer on the anode glass rolled as a reflecting mirror, improving the light luminance as much as ~60% compared with that on the front of one. This study seems to be discussed about the morphologies and field emission characteristics of CNT emitters according to the experimental parameters in fabricating the lamps emitting light on the both sides or only on the cathode back side. The experimental procedures are as follows. First, a CNT aqueous solution was prepared by ultrasonically dispersing purified SWCNTs in deionized water with sodium dodecyl sulfate (SDS). A milliliter or even several tens of micro-liters of CNT solution was deposited onto a porous alumina membrane through vacuum filtration. Thereafter, the alumina membrane was solvated with the 3 M NaOH solution and the floating CNT film was easily transferred to an ITO glass substrate. It is required for CNT film to make standing CNTs up to serve as electron emitter through an adhesive roller activation.

  • PDF