• 제목/요약/키워드: porosity ratio

검색결과 607건 처리시간 0.023초

Effect of polymer concentration in cryogelation of gelatin and poly (vinyl alcohol) scaffolds

  • Ceylan, Seda;Demir, Didem;Gul, Gulsah;Bolgen, Nimet
    • Biomaterials and Biomechanics in Bioengineering
    • /
    • 제4권1호
    • /
    • pp.1-8
    • /
    • 2019
  • The aim of this study was to investigate the effect of total polymer concentration on the chemical structure, morphology of pores, porosity, swelling ratio, degradation of gelatin-poly (vinyl alcohol) (Gel-PVA) cryogel scaffolds. Porous cryogels were prepared with cryogelation technique by using glutaraldehyde as a crosslinker. Functional group composition of cryogels after crosslinking was investigated by Fourier Transform Infrared (FTIR). The morphology of cryogels was characterized via scanning electron microscopy (SEM) and porosity analysis. All of the cryogels had a porous structure with an average pore size between $45.58{\pm}14.28$ and $50.14{\pm}4.26{\mu}m$. The cryogels were biodegradable and started to degrade in 14 days. As the polymer concentration increased the swelling ratio, the porosity and the degradation rate decreased. Spongy and mechanically stable Gel-PVA cryogels, with tunable properties, can be potential candidates as scaffolds for tissue engineering applications.

Critical thermal buckling analysis of porous FGP sandwich plates under various boundary conditions

  • Abdelhak Zohra;Benferhat Rabia;Hassaine Daouadji Tahar
    • Structural Engineering and Mechanics
    • /
    • 제87권1호
    • /
    • pp.29-46
    • /
    • 2023
  • Critical thermal buckling of functionally graded porous (FGP) sandwich plates under various types of thermal loading is considered. It is assumed that the mechanical and thermal nonhomogeneous properties of FGP sandwich plate vary smoothly by distribution of power law across the thickness of sandwich plate. In this paper, porosity defects are modeled as stiffness reduction criteria and included in the rule of mixture. The thermal environments are considered as uniform, linear and nonlinear temperature rises. The critical buckling temperature response of FGM sandwich plates has been analyzed under various boundary conditions. By comparing several numerical examples with the reference solutions, the results indicate that the present analysis has good accuracy and rapid convergence. Further, the effects of various parameters like distribution shape of porosity, sandwich combinations, aspect ratio, thickness ratio, boundary conditions on critical buckling temperature of FGP sandwich plate have been studied in this paper.

Assessing the effects of mineral content and porosity on ultrasonic wave velocity

  • Fereidooni, Davood
    • Geomechanics and Engineering
    • /
    • 제14권4호
    • /
    • pp.399-406
    • /
    • 2018
  • The influences of mineral content and porosity on ultrasonic wave velocity were assessed for ten hornfelsic rocks collected from southern and western parts of the city of Hamedan, western Iran. Selected rock samples were subjected to mineralogical, physical, and index laboratory tests. The tested rocks contain quartz, feldspar, biotite, muscovite, garnet, sillimanite, kyanite, staurolite, graphite and other fine grained cryptocrystalline matrix materials. The values of dry unit weight of the rocks were high, but the values of porosity and water absorption were low. In the rocks, the values of dry unit weight are related to the presence of dense minerals such as garnet so not affected by porosity. The statistical relationships between mineral content, porosity and ultrasonic wave velocity indicated that the porosity is the most important factor influencing ultrasonic wave velocity of the studied rocks. The values of P-wave velocity of the rocks range from moderate to very high. Empirical equations, relevant to different parameters of the rocks, were proposed to determine the rocks' essential characteristics such as primary and secondary wave velocities. Quality indexes (IQ) of the studied samples were determined based on P-wave velocities of them and their composing minerals and the samples were classified as non-fissured to moderately fissured rocks. Also, all tested samples are classified as slightly fissured rocks according to the ratio of S-wave to P-wave velocities.

Free vibrational behavior of perfect and imperfect multi-directional FG plates and curved structures

  • Pankaj S. Ghatage;P. Edwin Sudhagar;Vishesh R. Kar
    • Geomechanics and Engineering
    • /
    • 제35권4호
    • /
    • pp.367-383
    • /
    • 2023
  • The present paper examines the natural frequency responses of the bi-directional (nx-ny, ny-nz and nz-nx) and multidirectional (nx-ny-nz) functionally graded (FG) plate and curved structures with and without porosity. The even and uneven kind of porosity pattern are considered to observe the influence of porosity type and porosity index. The numerical findings have been obtained using a higher order shear deformation theory (HSDT) based isometric finite element (FE) approach generated in a MATLAB platform. According to the convergence and validation investigation, the proposed HSDT based FE model is adequate to predict free vibrational responses of multidirectional porous FG plates and curved structures. Further a parametric analysis is carried out by taking various design parameters into account. The free vibrational behavior of bidirectional (2D) and multidirectional (3D) perfect-imperfect FGM structure is examined against various power law index, support conditions, aspect, and thickness ratio, and for the curvature of curved structures. The results indicate that the maximum non-dimensional fundamental frequency (NFF) value is observed in perfect FGM plates and curved structures compared to porous FGM plates and curved structures and it is maximum for FGM plates and curved structures with uneven kind of porosity than even porosity.

신경회로망과 점진적 손상 모델링을 이용한 크리프 기공의 평가 (Estimation of Creep Cavities Using Neural Network and Progressive Damage Modeling)

  • 조석제;정현조
    • 대한기계학회논문집A
    • /
    • 제24권2호
    • /
    • pp.455-463
    • /
    • 2000
  • In order to develop nondestructive techniques for the quantitative estimation of creep damage a series of crept copper samples were prepared and their ultrasonic velocities were measured. Velocities measured in three directions with respect to the loading axis decreased nonlinearly and their anisotropy increased as a function of creep-induced porosity. A progressive damage model was described to explain the void-velocity relationship, including the anisotropy. The comparison of modeling study showed that the creep voids evolved from sphere toward flat oblate spheroid with its minor axis aligned along the stress direction. This model allowed us to determine the average aspect ratio of voids for a given porosity content. A novel technique, the back propagation neural network (BPNN), was applied for estimating the porosity content due to the creep damage. The measured velocities were used to train the BP classifier, and its accuracy was tested on another set of creep samples containing 0 to 0.7 % void content. When the void aspect ratio was used as input parameter together with the velocity data, the NN algorithm provided much better estimation of void content.

제조담배의 연기희석에 미치는 재료품과 궐련 물성 연구 I. 제조담배의 연기희석율과 팁 흡인저항에 미치는 팁페이파 및 필터권지 기공도의 영향 (Study on cigarette ventilation with cigarette materials and the properties of cigarettes 1. Effect of tipping paper permeability and plugwrap porosity on the cigarette pressure drop and ventilation)

  • 김성한;오영일;이영택;박태무
    • 한국연초학회지
    • /
    • 제10권1호
    • /
    • pp.83-91
    • /
    • 1988
  • The effects of tipping paper permeability and plugwrap porosity on the ventilation and the pressure drop of cigarettes have been studied and the results obtained were as follows. 1. The single and the multiple regression equation to estimate tip ventilation were establised. In the equations, the observed values of the tip ventilation with the varieties the plugwrap porosity were content with them by the single regression equation. 2. As based on the statistical consideration of the above equation, the deviation of the observed tip ventilation versus the tipping paper permeability were higher than them to the plugwrap porosity. 3. The regression equations to calculate pressure drop ratio and the total ventilation rate in filter tip from the tea ventilation were obtained. According to the equation, the observed values of the pressure drop ratio were significantly similar to them calculated. 4. It was found that the equations could be applied to the calculation of the ventilation of cigarettes using the mechanical and micro laser perforation tipping paper as well as the electrically perforated tipping paper of this Study.

  • PDF

불교란 점토 압밀시험 결과의 새로운 해석법 (A New Analysis Method of the Consolidation Test Data for an Undisturbed Clay)

  • 박종화;고우모또타쯔야
    • 한국농공학회지
    • /
    • 제44권6호
    • /
    • pp.106-114
    • /
    • 2002
  • In this study, the results of a series of consolidation test for undisturbed Ariake clay in Japan were analyzed by three methods, e-log p (e: void ratio, p: consolidation pressure), log e-log p and n-log p (n: porosity). Moreover, the characteristics of each analysis method were studied. For undisturbed Ariake clay, the log o-Log p and the n-log p relationships can be found as two groups of straight lines of different gradients, but both the elastic consolidation and plastic consolidation regions of e-log p relationship are expressed as a curve. In this paper, the porosity of consolidation yield n$\_$y/, consolidation yield stress p$\_$y/, and the gradient of the plastic consolidation region C$\_$p/ were represented by the log e-log p method, and n$\_$c/, P$\_$cn/ and C$\_$cn/ were represented by the n-log p method. The meaning and the relationships of each value were studied, and the interrelationships among compression indices i.e. C$\_$cn/, C$\_$p/ and C$\_$c/ are obtained from each analysis method as a function of initial porosity n$\_$0/.

코코넛 코이어와 피트모스 혼합 모래 토양의 물리·화학적 특성 (Physicochemical Properties of Root Zone Soil Based on Sand Blending with Coconut Coir and Peat Moss)

  • 김영선;배은지;최문진;김태웅;이긍주
    • 한국환경농학회지
    • /
    • 제41권2호
    • /
    • pp.101-107
    • /
    • 2022
  • BACKGROUND: Soil amendment was necessary applied for the sand that had been used to root zone of green ground in golf course because of its low water retention power and cation exchangeable capacity. This study was conducted to evaluate the effect of the mixed ratio of peat moss and coconut coir as soil amendment materials on the soil physicochemical properties applied to rootzone based on sand. METHODS AND RESULTS: The soil amendments were blended at 0, 3, 5, 7 and 10% by soil volume. The pH in the peat moss treatment was lower than that of control (0% soil amendment), and pH and electrical conductivity (EC) in the coconut coir were higher. The blending ratio of peat moss was negatively correlated with pH of rootzone soil (p<0.01), and that of coconut coir positively with EC (p<0.01). As compared with control, capillary porosity, the physical factors such as air-filled porosity, total porosity, and hydraulic conductivity of rootzone soil were increased by applying peat moss and coconut coir. For correlation coefficients between percentage of soil amendments and soil physical factors, peat moss and coconut coir were positively correlated with porosity and hydraulic conductivity (p<0.01). CONCLUSION(S): These results indicated that the application of peat moss and coconut coir affected on the change of physicochemical properties of rootzone soil, and improved soil porosity and hydraulic conductivity.

영상 분할기법을 활용한 콘크리트의 공극률 평가 (Estimation of Concrete Porosity Using Image Segmentation Method )

  • 정현준;정호성;김재현;김강수
    • 한국구조물진단유지관리공학회 논문집
    • /
    • 제27권1호
    • /
    • pp.30-36
    • /
    • 2023
  • 이 연구에서는 콘크리트 표면 이미지를 활용하여 표면공극률을 평가할 수 있는 영상 분할모델을 도출하였다. 물-시멘트비가 다른 3종류의 콘크리트 실험체 (w/c = 54, 35, 및 30%) 가 제작되었으며, 광학현미경을 활용하여 2,729장의 표면 이미지를 취득하였다. 공극이 마스킹 된 표면 이미지 를 활용하여 벤치마킹 테스트, 매개변수 최적화, 최종모델 도출이 실시되었으며, 97%의 검증정확도를 나타내는 영상 분할 모델을 도출할 수 있었다. 영상 분할모델 및 X-Ray Microscope (XRM)을 통해 얻은 공극률을 비교하여 모델을 검증하였으며, 물시멘트비가 높은 시편에 대해선 모델과 XRM이 평가한 공극률이 유사하였고, 물시멘트비가 낮은 시편에 대해서는 모델이 XRM보다 공극률을 낮게 평가하는 경향을 나타내었다.

연축전지 양극기판의 기계적 특성비교 분석 및 비 파괴 평가기법의 적용 (Material Evaluation of Lead Die-Casted Positive Grid for Battery Using Nondestructive Evaluation Technique)

  • 김희중;이민래;이준현
    • 대한기계학회논문집A
    • /
    • 제26권8호
    • /
    • pp.1709-1718
    • /
    • 2002
  • It is well recognized that improving capacity of positive grid in battery is one of key factors for controlling the expected long lift-time of Battery Energy Storage System(B.E.S.S). Thus it is really important to characterized material properties of positive grid which are mainly affected by fabrication process. In this study, two kinds of positive grids, which were fabricated by gravity casting and die-casting technique were used. Micro-structural observation and tensile test were conducted to investigate the effect of fabrication process of positive grid. Ultrasonic measurement based on pulse-echo method and ultrasonic C-scan technique also performed to correlate ultrasonic velocity with porosity ratio in positive grid. It was found that the porosity ratio of grid fabricated by gravity casting technique increased significantly compared to the grid fabricated by die-casting technique. It was also shown that ulrasonic technique is effective to evaluate the porosity ratio in positive grid.