• Title/Summary/Keyword: porosity distribution rate

Search Result 45, Processing Time 0.034 seconds

Physical Characterization of Domestic Aggregate (국내 골재의 물리적 특성 분석)

  • Junyoung Ko;Eungyu Park;Junghae Choi;Jong-Tae Kim
    • The Journal of Engineering Geology
    • /
    • v.33 no.1
    • /
    • pp.169-187
    • /
    • 2023
  • Aggregates from 84 cities and counties in Korea were tested for quality to allow analysis of the physical characteristics of aggregates from river, land, and forest environments. River and land aggregates were analyzed for 18 test items, and forest aggregates for 12 test items. They were classified according to watershed and geology, respectively. The observed physical characteristics of the river aggregates by basin were as follows: aggregates from the Geum River basin passed through 2.5, 1.2, 0.6, 0.3, 0.15, and 0.08 mm sieves; clay lumps constituted the Nakdong River basin material; aggregates from the Seomjin River basin passed through 10, 5, and 2.5 mm sieves; those from the Youngsang River basin passed through 1.2, 0.6, 0.3, 0.15, and 0.08 mm sieves; and aggregates from the Han River basin passed through 10, 5, 2.5, 1.2, 0.6, 0.3, and 0.08 mm sieves, Stability; Standard errors were analyzed for the average amount passing through 10, 0.6, and 0.08 mm silver sieves, and performance rate showed different distribution patterns from other physical characteristics. Analysis of variance found that 16 of the 18 items, excluding the absorption rate and the performance rate, had statistically significant differences in their averages by region. Considering land aggregates by basin, those from the Nakdong River basin excluding the Geum River basin had clay lumps, those from the Seomjin River basin had 10 and 5 mm sieve passage, aggregates from the Youngsang River basin had 0.08 mm sieve passage, and those from the Han River basin had 10, 0.6, and 0.08 mm sieve passage. The standard error of the mean of the quantity showed a different distribution pattern from the other physical characteristics. Analysis of variance found a statistically significant difference in the average of all 18 items by region. Analyzing forest aggregates by geology showed distributions of porosity patterns different from those of other physical characteristics in metamorphic rocks (but not igneous rocks), and distributions of wear rate and porosity were different from those of sedimentary rocks. There were statistically significant differences in the average volume mass, water absorption rate, wear rate, and Sc/Rc items by lipid.

Periodic Immersion of the Bangudae Petroglyphs and Rock Weathering Characteristics (반구대 암각화의 주기적인 침수와 구성암석의 풍화 특성)

  • Hwang, Sang-Ill;Park, Kyung-Geun;Yoon, Soon-Ock
    • Journal of the Korean Geographical Society
    • /
    • v.45 no.3
    • /
    • pp.342-359
    • /
    • 2010
  • The Bangudae Petroglyphs locate at Bangudong, Daegok-ri, Eonyang-eup, Ulju-gun, Ulsan and was designated as the No. 285 national treasure since 1995. After the construction of Sayeon-dam in 1965, there were many controversies of the rock weathering problems by the periodic immersion for approximately a few months. The isopleths of water content on the rock are drawn and the result shows relationships between the isopleths and distribution of joints or exfoliations. The distributions of water content rates in the Petroglyphs show the downward increasing pattern. This may suggest that the rates of water content are further influenced by the duration of immersion. Also, the upper part of the Petroglyphs with dense joints shows high rates of water content. If the water content rates in rocks increase, the water absorption rates increase too, because of the increasement of coefficient of permeability and porosity. The weathering damages of the Petroglyphs in which the pores are saturated by the periodic immersion are in the critical conditions.

Feasibility Study on Removal of Total Suspended Solid in Wastewater with Compressed Media Filter (압축성 여재 여과를 이용한 하수의 고형물질 제거 타당성 연구)

  • Kim, Yeseul;Jung, Chanil;Oh, Jeill;Yoon, Yeomin
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.36 no.2
    • /
    • pp.84-95
    • /
    • 2014
  • Recently, as a variety of techniques of CMF (Compressed media filter) that has advantages of high porosity and compressibility have been developed in the U.S. and Japan. Therefore, the interest of intensive wastewater treatment using CMF has grown. This study examined the feasibility of CMF with varying sewage water quality to determine the optimum operating conditions. A preliminary tracer test that investigated the filtering process under various compression and flow rate conditions was performed. In a high compression condition, different porosities were applied to each depth of the column. Therefore, a distinct difference between a theoretical value and results of tracer test was observed. For the TSS (Total suspended solid) removal and particle size distribution of CMF for pre-treatment water under the various compression conditions, the compression ratio of 30 percent as the optimal condition showed greater than 70% removal efficiency. In addition, the compression ratio of >15% was required to remove small-sized particles. Also, an additional process such as coagulation is necessary to increase the removal efficiency for < $10{\mu}m$ particles, since these small particles significantly influence the effluent concentration. Modeling results showed that as the compression rate was increased, TSS removal efficiency in accordance with each particle size in the initial filtration was noticeably observed. The modeling results according to the depth of column targeting $10{\mu}m$ particles having the largest percentage in particle size distribution showed that 150-300 mm in filter media layer was the most active with respect to the filtering.

Physical Properties of Soils under the Grass Block Porous Pavements (투수성 잔디블록 포장 하부 토양의 물리성)

  • Han, Seung-Ho;Kim, Won-Tae;Kang, Jin-Hyoung
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.34 no.4 s.117
    • /
    • pp.96-104
    • /
    • 2006
  • Impervious pavement is primary contributor to the malfunctioning of the urban water circulation system. The aim of this research is to provide basic information and data for new pavement materials and paving technology which could enhance the urban water circulation system. For the study purposes, physical properties of soils sampled from 16 stations were analyzed. The sampling spots were paved with grass block porous pavement material. The findings from the analysis are as follows. The hardness of soils under the pavement was $17{\sim}22mm$ for thoroughfare and $6{\sim}32mm$ for parking areas. The bulk density was $1.42{\sim}1.81g/cm^{3}$ for thoroughfare and $1.38{\sim}1.75g/cm^{3}$ for parking area. The solid phase ration was $46.9{\sim}62.5m^{3}/m^{3}$ for thoroughfare and $45.6{\sim}61.3m^{3}/m^{3}$ for parking area. The porosity was $37.5{\sim}53.1m^{3}/m^{3}$ for thoroughfare and $38.7{\sim}54.4m^{3}/m^{3}$ for parking area. The saturated hydraulic conductivity was $8{\sim}164mm/hr$ for thoroughfare and $14{\sim}201mm/hr$ for parking area. The saturated hydraulic conductivity of the H sample area (the area was completed three months ago) and that of the other area were compared. There was up to 80% decreases of the saturated hydraulic conductivity within one year after the completion of pavement. After the first year, decrease in the saturated hydraulic conductivity was modest. Also there are changes in both surface and under soil physical properties of the grass block porous pavement depending on compaction. The extent of change depends on the degree of compaction. All these factors are combined to influence the permeability of the soil under the pavements. The results of this suggest that it is required to develop a new pavement technology which ensures both the durability and porosity of the pavement to improve the water circulation system by applying Ecological Area Rate.

Production and Application of Domestic Input Data for Safety Assessment of Disposal (처분안전성평가를 위한 국내고유 입력자료의 확보와 적용)

  • Park, Chung-Kyun;Lee, Jae-Kwang;Baik, Min-Hoon;Lee, Youn-Myoung;Ko, Nak-Youl;Jeong, Jong-Tae
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.10 no.3
    • /
    • pp.161-170
    • /
    • 2012
  • To provide domestic values of input parameters in a safety assessment of radioactive waste disposal under domestic deep underground environments, various kinds of experiments have been carried out under KURT (KAERI Underground Research Tunnel) conditions. The input parameters were classified, and some of them were selected for this study by the criteria of importance. The domestic experimental data under KURT environments were given top priority in the data review process. Foreign data under similar conditions to KURT were also gathered. The collected data were arranged and the statistical calculations were processed. The properties and distribution of the data were explained and compared to foreign values in view of their validity. The following parameters were analysed: failure time and early time failure rate of a container, solubility of nuclides, porosity and density of the buffer, and distribution coefficients of nuclides in the geomedia, hydraulic conductivity, diffusion depth of nuclides, groundwater flow rate, fracture aperture, length of internal fracture, and width of faulted rock mass in the host rock.

The Evaluation on the exiting greens of Hwasan Country Club by undisturbed Soil Core Analysis (토양 코아 분석을 통한 화산 골프장의 조성된 그린에 대한 평가)

  • 이상재;허근영;심경구
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.26 no.2
    • /
    • pp.54-61
    • /
    • 1998
  • The subsurface environment of the root zone area can set the stae for "do or die" of the turfgrass plant. The good condition of the greens is verified by their physical properties. Therefore, this study was carried to evaluate on the existing green of Hwasan C.C. by undisturbed soil Core Anaysis. We completed the ISTRC SYSTEM BenchMarking of the undisturbed core samples taken from Green #1, Green #5, Green #9-"Best" area, and Green #9-"Stressed" area for the Hwasan C.C.. It was also our understanding that the greens were in "good" to "very good" conditioni. THe exception might be Green #9-"Stress" area, which was the stressed area. The stressed area was confined to a ridge across Green #9. The organic content test results comfirmed the development of organic layering in depth 0-2.5cm. For the amount of compaction in the upper root zones and te development of the green's respective organic layers, the infiltration rates were high in Green #1, Green #5, and Green #9 "Stressed" area. The depicted aerificaton hole might be the probable cause of the relatively high infiltraton rate. Green #9-"Best" area had a tested infiltration rate of 18.75cm/hr. Either this area had not been aerified, or the undisturbed sample did not contain a aerification cavity. The water retention capacity of the undisturbed samples was good. When the greens were first constructed, the original root zone mix had been relatively low water retention properties. And the bulk density and the porosity of the undisturbed samples were good. In the result, all the greens were similar except for the infiltration. Thus, we supposed that Green #9-"Stressed" area might be ainly influenced by the amount of irrigation water and the configuration of the green's surface. There had been a reduction in the amount of irrigation water as the water retention capacity in the greens was promoted. Especially, it had gradually become more of a problem as the green had matured in Green #9-"Stressed" area. Because Green #9-"Stressed" area was a ridge area. The reduction in the amount of irrigation water might be the probable cause of the stress in Green #9-"Stressed" area. Our final observation related to the soil texture and the particle size distribution of the sand. Though and sand contant of all the tested greens were good, the gravel content of them exceeded ISTRC Guidelines. In particle size distribution of the sand, the very coarse and the coarse content of all the tested greens exceeded, but the rest was insufficient. The stability is a function of the material retained on the 0.25mm mesh screen. But, the content of all the tested greens was very insufficient. Though all the greens was serviceable, the coarse root zone sands, such as the sand in the tested greens, tended to be "unstable". Thus, we recommend using a topdressing/aerification sand which should be more in line with ISTRC/USGA Guidelines.;unstable". Thus, we recommend using a topdressing/aerification sand which should be more in line with ISTRC/USGA Guidelines.ines.

  • PDF

LLE and SLM studies for Pd(II) separation using a thiodiglycolamide-based ligand

  • Kumbhaj, Shweta;Prabhu, Vandana;Patwardhan, Anand V.
    • Membrane and Water Treatment
    • /
    • v.9 no.6
    • /
    • pp.463-471
    • /
    • 2018
  • The present paper deals with the liquid-liquid extraction and flat sheet supported liquid membrane studies of Pd(II) separation from nitric acid medium using a novel synthesized ligand, namely, N,N,N',N'-tetraethyl-2,2-thiodiethanthiodiglycolamide (TETEDGA). The effect of various diluents and stripping reagents on the extraction of Pd(II) was studied. The liquid-liquid extraction studies showed complete extraction of Pd(II) in ~ 5 min. The influence of nitric acid and TETEDGA concentration on the distribution of Pd(II) has been investigated. The increase in nitric acid concentration resulted in increase in extraction of Pd(II). Stoichiometry of the extracted species was found to be $Pd(NO_3)_2{\cdot}TETEDGA$ by slope analysis method. Extraction studies with SSCD solution showed negligible uptake of Pt, Cr, Ni, and Fe, thus showing very high selectivity and extractability of TETEDGA for Pd(II). The flat sheet supported liquid membrane studies showed quantitative transport of Pd(II), ~99%, from the feed ($3M\;HNO_3$) to the strippant (0.02 M thiourea diluted in $0.4M\;HNO_3$) using 0.01 M TETEDGA as a carrier diluted in n-dodecane. Extraction time was ~160 min. Parameters such as feed acidity, TETEDGA concentration in membrane phase, membrane porosity etc. were optimized to achieve maximum transport rate. Permeability coefficient value of $2.66{\times}10^{-3}cm/s$ was observed using TETEDGA (0.01 M) as carrier, at 3 M, $HNO_3$ feed acidity across $0.2{\mu}m$ PTFE as membrane. The membrane was found to be stable over five runs of the operation.

Mathematical Model for the Removal of SO2 by the γ-Alumina Impregnated with CuO (γ-Alumina에 담지된 산화구리에 의한 SO2의 제거에 관한 수치모사)

  • Jeon, Bup Ju;Hong, In Kwon;Park, Kyung Ai;Jung, Il Hyun
    • Applied Chemistry for Engineering
    • /
    • v.5 no.3
    • /
    • pp.385-394
    • /
    • 1994
  • Numerical solutions were obtained to the model equations for various of the parameters characterizing the pore structure, effective internal diffusion, and the chemical reaction constant. The conversion was decreased with the cause of pore closure at the surface of reacting particles, reduction of porosity, surface area of reaction and effective diffusion coefficient in the solid with the progress of reaction. Total conversion was strongly dependent on the local conversion at surface. According to the decreasing of impregnated concentration of the copper oxide and the increase of the flue gases concentration, total conversion was increased. The conversion was affected by gas flow rate and pore size distribution in the reacting solid.

  • PDF

Platinum Nano-Dispersion via In Situ Processing - Preparation and catalytic Property of Porous $CaZrO_3/MgO/Pt$ Nanocomposite

  • Yoshikazu;Hwang, Hae-Jin;Naoki Kondo;Tatsuki Ohji
    • Journal of Powder Materials
    • /
    • v.8 no.3
    • /
    • pp.163-167
    • /
    • 2001
  • A bulk porous $CaZrO_3/MgO$ composite with plantinum nano-dispersion was synthesized in air atmosphere through the combination of several in situ reactions, including the pyrolysis of $PtO_2$. A mixture of $CaMg(CO_3)_2$(dolomite), $ZrO_2$, $PtO_2$ and LiF (0.5 wt%, as an additive) was cold isostatically pressed at 200 MPa and sintered at $1100^{\circ}C$ for 2 h. The porous $CaZrO_3/MgO/Pt$ composite ($CaZrO_3/MgO$ : Pt=99 : 1 in volume) had a uniformly open-porous structure (porosity: 56%) with three-dimensional (3-D) network and a narrow pore-size distribution, similarly to the porous $CaZrO_3/MgO$ composites reported before. Catalytic Properties (viz., NO direct decomposition and NO reduction by $C_2H_4$) of the $CaZrO_3/MgO/Pt$ composite were investigated up to $900^{\circ}C$. In the absence of oxygen, the NO conversion rate reached ~52% for the direct decomposition and ~100% for the reduction by $C_2H_4$, respectively. The results suggest the possibility of the porous composite as a multifunctional filter, i.e., simultaneous hot gas-filtering and $de-NO_x$ in one component.

  • PDF

Vacuum Carburizing System for Powdered Metal Parts & Components

  • Kowakewski, Janusz;Kucharski, Karol
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2006.09b
    • /
    • pp.1018-1021
    • /
    • 2006
  • Powdered metal parts and components may be carburized successfully in a vacuum furnace by combining carburizing technology $VacCarb^{TM}$ with a hi-tech control system. This approach is different from traditional carburizing methods, because vacuum carburizing is a non-equilibrium process. It is not possible to set the carbon potential as in a traditional carburizing atmosphere and control its composition in order to obtain a desired carburized case. This paper presents test results that demonstrate that vacuum carburizing system $VacCarb^{TM}$ carburized P.M. materials faster than traditional steel with acceptable results. In the experiments conducted, PM samples with the lowest density and open porosity showed a dramatic increase in the surface carbon content up to 2.5%C and a 3 times deeper case. Currently the boost-diffusion technique is applied to control the surface carbon content and distribution in the case. In the first boost step, the flow of the carburizing gas has to be sufficient to saturate the austenite, while avoiding soot deposition and formation of massive carbides. To accomplish this goal, the proper gas flow rate has to be calculated. In the case of P.M. parts, more carbon can be absorbed by the part's surface because of the additional internal surface area created by pores present in the carburized case. This amount will depend on the density of the part, the densification grade of the surface layer and the stage of the surface. "as machined" or "as sintered". It is believed that enhanced gas diffusion after initial evacuation of the P.M. parts leads to faster carburization from within the pores, especially when pores are open . surface "as sintered" and interconnected . low density. A serious problem with vacuum carburizing is delivery of the carbon in a uniform manner to the work pieces. This led to the development of the different methods of carburizing gas circulation such as the pulse/pump method or the pulse/pause technique applied in SECO/WARWICK's $VacCarb^{TM}$ Technology. In both cases, each pressure change may deliver fresh carburizing atmosphere into the pores and leads to faster carburization from within the pores. Since today's control of vacuum carburizing is based largely on empirical results, presented experiments may lead to better understanding and improved control of the process.

  • PDF