• Title/Summary/Keyword: pores structure

Search Result 516, Processing Time 0.028 seconds

Sustained release of alginate hydrogel containing antimicrobial peptide Chol-37(F34-R) in vitro and its effect on wound healing in murine model of Pseudomonas aeruginosa infection

  • Shuaibing Shi;Hefan Dong;Xiaoyou Chen;Siqi Xu;Yue Song;Meiting Li;Zhiling Yan ;Xiaoli Wang ;Mingfu Niu ;Min Zhang;Chengshui Liao
    • Journal of Veterinary Science
    • /
    • v.24 no.3
    • /
    • pp.44.1-44.17
    • /
    • 2023
  • Background: Antibiotic resistance is a significant public health concern around the globe. Antimicrobial peptides exhibit broad-spectrum and efficient antibacterial activity with an added advantage of low drug resistance. The higher water content and 3D network structure of the hydrogels are beneficial for maintaining antimicrobial peptide activity and help to prevent degradation. The antimicrobial peptide released from hydrogels also hasten the local wound healing by promoting epithelial tissue regeneration and granulation tissue formation. Objective: This study aimed at developing sodium alginate based hydrogel loaded with a novel antimicrobial peptide Chol-37(F34-R) and to investigate the characteristics in vitro and in vivo as an alternative antibacterial wound dressing to treat infectious wounds. Methods: Hydrogels were developed and optimized by varying the concentrations of crosslinkers and subjected to various characterization tests like cross-sectional morphology, swelling index, percent water contents, water retention ratio, drug release and antibacterial activity in vitro, and Pseudomonas aeruginosa infected wound mice model in vivo. Results: The results indicated that the hydrogel C proved superior in terms of cross-sectional morphology having uniformly sized interconnected pores, a good swelling index, with the capacity to retain a higher quantity of water. Furthermore, the optimized hydrogel has been found to exert a significant antimicrobial activity against bacteria and was also found to prevent bacterial infiltration into the wound site due to forming an impermeable barrier between the wound bed and external environment. The optimized hydrogel was found to significantly hasten skin regeneration in animal models when compared to other treatments in addition to strong inhibitory effect on the release of pro-inflammatory cytokines (interleukin-1β and tumor necrosis factor-α). Conclusions: Our results suggest that sodium alginate -based hydrogels loaded with Chol-37(F34-R) hold the potential to be used as an alternative to conventional antibiotics in treating infectious skin wounds.

The characteristics of aqueous ammonium-adsorption of biochar produced from Sudangrass (수단그라스 Biochar를 적용한 수중 암모니아성 질소(NH4-N) 흡착 특성)

  • Doyoon Ryu;Do-Yong Kim;Daegi Kim
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.31 no.2
    • /
    • pp.63-71
    • /
    • 2023
  • Increased nitrogen in the water system has become an important environmental problem around the world, as it causes eutrophication, algae bloom, and red tide, destroys the water system, and undermines water's self-purification. The most common form of nitrogen in the water system is ammonium ion (NH4+), and the largest portion of ammonium ions comes from wastewater. NH4+ is a major contributor to eutrophication, which calls for appropriate treatment and measures for ammonium removal. This study produced biochar by applying Sorghum × drummondii, a type of biomass with a great growth profile, analyzed the adsorption capacity of Sorghum × drummondii biochar produced from the changing carbonization temperature condition of 200 to 400℃ in the ammonium ion range of 10 to 100 ppm, and used the results to evaluate its potential as an adsorbent. Carbonization decomposed the chemical structure of Sorghum × drummondii and increased the content of carbon and fixed carbon in the biochar. The biochar's pH and electrical conductivity showed high adsorption potential for cations due to electrical conductivity as its pH and electrical conductivity increased along with higher carbonization temperature. Based on the results of an adsorption experiment, the biochar showed 54.5% and 17.4% in the maximum and minimum NH4-N removal efficiency as the concentration of NH4-N increased, and higher carbonization temperature facilitated the adsorption of pollutants due to the biochar's increased pores and specific surface area and subsequently improved NH4-N removal efficiency. FT-IR analysis showed that the overall surface functional groups decreased due to high temperature from carbonization.

Characteristics of the Expanded Road Embankment Constructed by Lightweight Air-Mixed Soils for a Short-Term (경랑기포혼합토로 단기간에 시공된 확폭도로성토체의 특성)

  • Hwang, Joong Ho;Ahn, Young Kyun;Lee, Young-Jun;Kim, Tae-Hyung
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.30 no.4D
    • /
    • pp.377-386
    • /
    • 2010
  • This study was conducted to find out the characteristics of the expanded road embankment constructed by the lightweight air-mixed soil (slurry density $10kN/m^3$) for a short-term without any ground improvement. Compression strength, capillary rise height of the lightweight air-mixed soil and settlement behavior of soft ground were studied. Compression strengths of the specimens sampled at the site after 1 and 5 months of construction were all satisfied the required strength 500 kPa. However, it was not convinced the homogeneity construction, because the values of strength were depending on the sampled location. Also, strength difference between laboratory and site specimens were found about 19%, and thus it should be considered for mixing design. Capillary rise reached about 20 cm for 70 hours because of a numerous tiny pores existed inside the lightweight air-mixed soil. Relationship between settlement and time of the soft ground placed underneath the expanded embankment was estimated by using the measured data and back analysis technique. The current average consolidation ratio and the final settlement after 120 months later were estimated about 32% and 4.5cm, respectively. This settlement is much less value than the allowable settlement 10cm for this structure.

Catalytic Effects on Graphitized Carbon Fibers of Graphitization Catalysts Introduced during Hot-Water Stretching (열수 연신시 흑연화 촉매 도입에 따른 탄소섬유의 흑연화 촉진효과)

  • Hyun-Jae Cho;Hye Rin Lee;Byoung-Suhk, Kim;Yong-Sik, Chung
    • Composites Research
    • /
    • v.37 no.3
    • /
    • pp.162-169
    • /
    • 2024
  • In this study, PAN(polyacrylonitrile)-based precursor fibers were produced through a wet-spinning process, and their morphologies and graphitization behavior were investigated in the presence of two graphitization catalysts (Ca, Ni). The graphitization catalysts were introduced into the formed pores during hot-water stretching of wet-spun PAN-based precursor fibers. The catalytic effects of graphitization catalysts were examined through crystal structure and Raman analysis. At a relatively low temperature of 1500℃, the graphitization was not significantly affected, whereas at a high temperature of 2400℃, the obtained ID/IG value of graphite fiber (GF-Ni100) was decreased by about twice (~0.28) compared to the untreated fibers (GF-AS~0.54). By comparing the ID/IG values (GF-Ca100~0.42: GF-Ni100~0.28) of Ca and Ni graphitization catalyst, it was found that the degree of graphitization of Ni graphitization catalyst showed higher influence than that of Ca graphitization catalyst. Moreover, 2D band was also observed, indicating that the graphite plane structures composed of multiple layers were developed. XRD results confirmed that the crystal inter-planar distance (d002) of the graphite crystal was slightly decreased after the treatment with the graphitization catalyst, But, the crystal size of Ca-treated graphite fiber (GF-Ca100) was increased by up to ~5 nm.

The Effect of Platelet Derived Growth Factor - BB Loaded Chitosan/Calcium Metaphosphate on Bone Regeneration (혈소판유래성장인자를 함유한 Chitosan/Calcium Metaphosphate의 골조직재생효과에 관한 연구)

  • Lee, Seung-Yeol;Seol, Yang-Jo;Lee, Yong-Moo;Lee, Ju-Yeon;Lee, Seung-Jin;Kim, Suk-Young;Ku, Young;Rhyu, In-Chul;Han, Soo-Boo;Choi, Sang-Mook;Chung, Chong-Pyoung
    • Journal of Periodontal and Implant Science
    • /
    • v.31 no.1
    • /
    • pp.1-23
    • /
    • 2001
  • Chitosan is biodegradable natural polymer that has been demonstrated its ability to improve wound healing, and calcium metaphosphate(CMP) is a unique class of phosphate minerals having a polymeric structure. In this study, chitosan/CMP and platelet derived growth factor(PDGF-BB) loaded chitosan/CMP sponges were developed, and the effect of the sponges on bone regeneration and their possibility as scaffolds for bone formation by three-dimensional osteoblast culture were examined. PDGF-BB loaded chitosan/CMP sponges were prepared by freeze-drying of a mixture of chitosan solution and CMP powder, and soaking in a PDGF-BB solution. Fabricated sponge retained its 3-dimensional porous structure with $100-200\;{\mu}m$ pores. The release kinetics of PDGF-BB loaded onto the sponge were measured in vitro with $^{125}I-labeled$ PDGF-BB. In order to examine their possibility as scaffolds for bone formation, fetal rat calvarial osteoblastic cells were isolated, cultured, and seeded into the sponges. The cell-sponge constructs were cultured for 28 days. Cell proliferation, alkaline phosphatase activity were measured at 1, 7, 14 and 28 days, and histologic examination was performed. In order to examine the effect on the healing of bone defect, the sponges were implanted into rat calvarial defects. Rats were sacrificed 2 and 4 weeks after implantation and histologic and histomorphometrical examination were performed. An effective therapeutic concentration of PDGF-BB following a high initial burst release was maintained throughout the examination period. PDGF-BB loaded chitosan/CMP sponges supported the proliferation of seeded osteoblastic cells as well as their differentiation as indicated by high alkaline phosphatase activities. Histologic findings indicated that seeded osteoblastic cells well attached to sponge matrices and proliferated in a multi-layer fashion. In the experiments of implantation in rat calvarial defects, histologic and histomorphometric examination revealed that chitosan/CMP sponge promoted osseous healing as compared to controls. PDGF-BB loaded chitosan/CMP sponge further echanced bone regeneration. These results suggested that PDGF-BB loaded chitosan/CMP sponge was a feasable scaffolding material to grow osteoblast in a three-dimentional structure for transplantation into a site for bone regeneration.

  • PDF

Analyze of I-V Characteristics and Amorphous Sturcture by XRD Patterns (XRD 패턴에 의한 비정질구조와 I-V 특성분석)

  • Oh, Teresa
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.7
    • /
    • pp.16-19
    • /
    • 2019
  • A thinner film has superior electrical properties and a better amorphous structure. Amorphous structures can be effective in improving conductivity through a depletion effect. Research is needed on the Schottky contact, where potential barriers are formed, as a way to identify these characteristics. $SiO_2/SnO_2$ thin films were prepared to examine the amorphous structure and Schottky contact, $SiO_2$ thin films were prepared using Ar = 20 sccm. $SnO_2$ thin films were deposited using mixed gas with a flow rate of argon and oxygen at 20 sccm, and $SnO_2$ thin films were added by magnetron sputtering and treated at $100^{\circ}C$ and $150^{\circ}C$. To identify the conditions under which the amorphous structure was constructed, the XRD patterns were investigated and C-V and I-V measurements were taken to make Al electrodes and perform electrical analysis. The depletion layer was formed by the recombination of electrons and holes through the heat treatment process. $SiO_2/SnO_2$ thin films confirmed that the pores were well formed when heat treated at $100^{\circ}C$ and an electric current was applied over the micro area. An amorphous $SiO_2/SnO_2$ thin film with heat treatment at $100^{\circ}C$ showed no reflection at $33^{\circ}\;2{\theta}$ in the XRD pattern, and a reflection at $44^{\circ}2\;{\theta}$. The macroscopic view (-30 V

Selective Separation of $CO_2/CH_4$ by Pore Structure Modification of Activated Carbon Fiber (활성탄소섬유의 기공구조 변형을 이용한 $CO_2/CH_4$의 선택적 분리 기술)

  • Moon, S.H.;Park, S.Y.
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.29 no.9
    • /
    • pp.1027-1034
    • /
    • 2007
  • This research was focused on the selective separation of $CO_2$ or $CH_4$ from mixture of these gases, by controlling the size of pore or pore gate. Pitch based activated carbon fibers(ACF) were used as adsorbents. The size of pore gate was controlled by the molecule having similar size to that of pore opening. After the adsorption of adsorbate on pore surface, planar molecules such as benzene and naphthalene covered the pore gate. The slow release of adsorbate from the pores covered by planar molecules makes apertures between planar molecules covering pore gate and this structure can be fixed by rapid pyrolysis. The control of pore gate using benzene as covering molecules could not accomplished due to the simultaneous volatilization of benzene and adsorbate$(CO_2)$ caused by similar temperatures of benzene volatilization and adsorbate desorption. Therefore we replaced benzene with naphthalene looking for the stability at a $CO_2$ desorption temperature. The naphthalene molecule was adsorbed on the ACF up to 15% of ACF weight and showed no desorption until $100^{\circ}C$, indicating that the molecule could be used as a good cover molecule. Naphthalene could cover almost all the pore gate, reducing BET surface area from 753 $m^2/g$ to 0.7 $m^2/g$. A mixed gas$(CO_2:CH_4=50:50)$ was adsorbed on the naphthalene treated OG-7A ACF. The amount of $CO_2$ adsorption increased with total pressure, whileas thai of $CH_4$ was not so much influenced on the pressure, indicating that $CO_2$ made more compounds on the ACF surface along with total pressure increase. The most $CO_2$ and the least $CH_4$ were adsorbed in the condition of 0.4 atm, resulting in the highly pure $CH_4$ left in ACF.

Relationship of Glomerular Basement Membrane Alterations to Epithelial Cell Structure and Clinical Parameters in Alport Syndrome (Alport 증후군에서 사구체 기저막의 형태학적 변화와 사구체 상피세포의 구조 및 임상지표와의 관계)

  • Eom, Hye-Jin;Hong, Seung-Jin;Lee, Jae-Seung;Jeong, Hyeon-Joo;Kim, Young-Ki;Kim, Kee-Hyuck
    • Childhood Kidney Diseases
    • /
    • v.14 no.1
    • /
    • pp.22-31
    • /
    • 2010
  • Purpose : This study was performed to evaluate the relationship between glomerular basement membrane (GBM) alterations to epithelial cell (EpC) structure and renal function in Alport Syndrome (AS) patients. Methods : Fifteen patients diagnosed with AS (4-26yrs) were examined. The GBM in AS was categorized as : C1) normal, C2) minor alterations (widening of lamina rara interna or externa without lamina densa change), C3) nonspecific splitting of lamina densa, C4) basket-weaving pattern of lamina densa splitting. The length of each GBM portion along the epithelial side was measured on the systematically obtained electron microscopic photographs. Furthermore to obtain an objective assessment of the degree of glomerular EpC foot process change, the number of slit pores along $10\;{\mu}m$ of peripheral GBM in each category was obtained. Results : The percentage of normal GBM portion (C1) correlated inversely with daily protein excretion (g/day/$m^2$, P<0.05) and sum of the percentage of abnormal GBM portion (C2+C3+C4) had direct correlation with daily protein excretion (g/day/$m^2$, P<0.05). There were no significant relationships between the percentages of other categories of GBM alterations and creatinine clearance or protein excretion. There were no significant relationships between of creatinine clearance in relation to normal GBM(C1) portion as well as that in relation to sum of the percentage of abnormal GBM portion (C2+C3+C4). GBM abnormality did not correlate with age at biopsy. Conclusion : The extent of GBM structural abnormality is related to proteinuria in AS but the epithelial response is uniform even though the GBM ultrastructural lesions are not.

Ammonia Decomposition over Ni Catalysts Supported on Zeolites for Clean Hydrogen Production (청정수소 생산을 위한 암모니아 분해 반응에서 Ni/Zeolite 촉매의 반응활성에 관한 연구)

  • Jiyu Kim;Kyoung Deok Kim;Unho Jung;Yongha Park;Ki Bong Lee;Kee Young Koo
    • Journal of the Korean Institute of Gas
    • /
    • v.27 no.3
    • /
    • pp.19-26
    • /
    • 2023
  • Hydrogen, a clean energy source free of COx emissions, is poised to replace fossil fuels, with its usage on the rise. Despite its high energy content per unit mass, hydrogen faces limitations in storage and transportation due to its low storage density and challenges in long-term storage. In contrast, ammonia offers a high storage capacity per unit volume and is relatively easy to liquefy, making it an attractive option for storing and transporting large volumes of hydrogen. While NH3 decomposition is an endothermic reaction, achieving excellent low-temperature catalytic activity is essential for process efficiency and cost-effectiveness. The study examined the effects of different zeolite types (5A, NaY, ZSM5) on NH3 decomposition activity, considering differences in pore structure, cations, and Si/Al-ratio. Notably, the 5A zeolite facilitated the high dispersion of Ni across the surface, inside pores, and within the structure. Its low Si/Al ratio contributed to abundant acidity, enhancing ammonia adsorption. Additionally, the presence of Na and Ca cations in the support created medium basic sites that improved N2 desorption rates. As a result, among the prepared catalysts, the 15 wt%Ni/5A catalyst exhibited the highest NH3 conversion and a high H2 formation rate of 23.5 mmol/gcat·min (30,000 mL/gcat·h, 600 ℃). This performance was attributed to the strong metal-support interaction and the enhancement of N2 desorption rates through the presence of medium basic sites.

A Study on a Method for Fire Suppression in a Central Area inside the Roof of a Wooden Cultural Property using a Gas Extinguishing Apparatus (가스소화설비를 이용한 목조 문화재 적심부 화재진압 방법에 관한 연구)

  • Kim, Hyunsung;Kim, Byung Sean;Cho, Woncheol;Lim, Yun Mook
    • Journal of Korean Society of societal Security
    • /
    • v.3 no.2
    • /
    • pp.65-71
    • /
    • 2010
  • This study was conducted to provide a method for fire suppression in a central area inside the roof of a wooden cultural property using a gas extinguishing apparatus, which is used as one of fire suppression methods with view to preventing valuable wooden properties inherited from ancestors from being destructed by fire. For a wooden property, it is very difficult to suppress fire when combustion spreads to a central area inside its roof, so it is impossible to put out a fire without destructing it. Such a fire fighting apparatus as a sprinkler, etc., installed in modern structures, is very effective, but the possibility of damaging a cultural property is highly probable after installment and operation, which leads to its low adaptability to a wooden property. Thus, the necessity of developing a fire suppress ion apparatus was raised to minimize the said problem and to obtain the desired results, and the need of making a plan on the installment was also raised based on the results of a test whose validity was proven. The central area inside a roof is a traditional - architectural style which is found in Korean wooden structures only, so it is impossible to discover similar cases in foreign countries. For this reason, this study was conducted to verify the effectiveness by developing a fixed fire suppression apparatus designed considering the speed and effectiveness in fire suppression. This study was sequentially carried out in the following steps. First, a frame for this study was made and the specific plan on a fire suppression method was established. Then, a fire suppression apparatus was installed. In the first step, the effectiveness for fire suppression was tested by installing valve open - punched - main water pores, and in the second step, the same effectiveness was tested by valve opened - punched - injection ports. For a wooden property similar to "Sungnyemun"(Gate of Exalted Ceremonies), its central area of the roof decides whether the fire suppression is successful or not, so the opinions on how to put out a fire were presented in this study, and thus the objective data to establish a method on fire suppression in a wooden structure(cultural property) was secured. Lastly, a scientific verification in the effectiveness for fire suppression measures was presented by installing a gas - fixed fire suppression apparatus.

  • PDF