• Title/Summary/Keyword: pores structure

Search Result 516, Processing Time 0.028 seconds

The Properties of YMn$_3$ ceramics (YMn$_3$ 세라믹의 물리적 특성)

  • 김재윤;김부근;김강언;정수태
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1998.11a
    • /
    • pp.267-270
    • /
    • 1998
  • We measured the dielectric properties with YMnO$_3$ ceramics using solution method based procedure via by citrate. The crystalline phases were determined using XRD. Also we observed morphologies of YMnO$_3$ ceramics using SEM. We proved the structure of YMnO$_3$ ceramics which is hexagonal. But lots of pores were observed the microstructure. It would be considered as volatile organic. The maximum density of YMnO$_3$ ceramics is obtained sintering temperature 135$0^{\circ}C$ and the ratio 0.95/1.05 of Y/Mn. But even though the density we obtained is the highest, that is lower than theoretical density because of remaining organics by citric acid. Dielectric constant and dissipation factor were improved as increasing sintering temperature and the Y/Mn ratio (0.95/1.05)

  • PDF

Crystal Growth of Nd;YCOB and Fabrication of RGB Laser Device (Nd:YCOB 단결정 성장과 RGB 레이저 소자 제조)

  • 김충렬;석상일;장원권;김도진;유영문
    • Korean Journal of Crystallography
    • /
    • v.12 no.1
    • /
    • pp.5-9
    • /
    • 2001
  • Nd/sub 0.05/Y/sub 0.95/Ca₄O(BO₃)₃(Nd:YCOB) single crystals were grown by the Czochralski method using a iridium crucible under N₂ atmosphere. Optimum growth parameters to get high quality of single crystals were 1.5∼2 mm/hr of growth rate and 10∼20 rpm of rotation rate. The grown crystals were transparent with light purple color and well-developed in cleavage planes. The crystal structure of Nd;YCOB were identified to monoclinic by XRD method. Crystal defects acting as light scattering centers, such as micro-pores, secondary phases, inclusions and cracks were not observed under the He-Ne laser illuminations. Three red, green, blue laser devices for the RGB laser oscillations were designed and then fabricated from the grown Nd:YCOB crystals according to the phase-matching angles of negative type-I which were φ=16.40°, 33.95° and θ=22.59° with the flatness of λ/6 at least, respectively.

  • PDF

Chloride ion and Carbonation Resistance of the Cement Mortar admixed with Waste Phosphogypsum (폐석고를 혼입한 모르타르의 염화물 이온 및 중성화에 대한 저항성)

  • An, Yang-Jin;Mun, Kyoung-Ju;Soh, Yang-Seob
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2005.11a
    • /
    • pp.727-730
    • /
    • 2005
  • The purpose of this study evaluates possibilities of waste phosphogypsum into concerts by steam curing admixture. The waste phosphogypsum is made use of 4 forms(Dehydrate, $\beta$-Hemihydrate, III-Anhydrite and II-Anhydrite) which were changed to in low temperature of calcination. The penetration depth and compressive strength of cement mortar are investigated to evaluate the chloride ion and carbonation resistance. As a result, chloride ion and carbonation resistance of cement mortar admixed with waste phosphogypsum are more excellent than cement mortar contained OPC alone. The internal pores of cement mortar are decreased by using waste phosphogypsum, because the hydrates of ettringite which is denesified in structure is much formed in early ages at steam curing. These densified effect is concluded with improving the resistance to attack of cement mortar including waste phospogypsum.

  • PDF

An Experimental Study on the Salt Resistance Properties with Concrete Materials under Marine Environment (Exposure period : 5 years) (해양환경에 폭로한 콘크리트의 내염특성에 대한 실험적 연구 (폭로기간 : 5년))

  • Kim, Yong-Chul;Suk, Jun-Yeoll;Shin, Do-Chul
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2006.05b
    • /
    • pp.169-172
    • /
    • 2006
  • The IIA structures exposed to marine environment is subject to many different types of potential attack. The physical attack due to drying and wetting would increase the internal stress of concrete. The chemical attack resulting from the diffusion of ions$(Cl^-,SO_4^{2-},Mg^+)$ from seawater through the pores in concrete. Therefore the sea water resistance of concrete must be considered when it is used for structure in the ocean. The objective of this study is to evaluate chloride diffusion and corrosion characteristics of concrete when using the various concrete materials under marine environment. After 5 years of exposure, concrete incorporating 40% blast-furnace slag as replacement for type I cement with low w/c ratio of 0.42 and using the inhibitor shows excellent performance.

  • PDF

The Analysis of Chloride Ion Penetration into a Concrete Structure in Marine Environment (해안환경하에 있는 콘크리트의 염분침투해석)

  • Cho, Sun-Kyu;Jeon, Gui;Shin, Chee-Burm
    • Journal of Ocean Engineering and Technology
    • /
    • v.12 no.3 s.29
    • /
    • pp.68-74
    • /
    • 1998
  • An increase of concrete construction in marine environments as well as an increasing use of marine aggregate at the mixing stage of concrete has provoked an important problem. A high concentration of chloride ion in the vicinity of steel bars in concrete is the principal cause of premature reinforcement corrosion in concrete structures. In this study, the behavior of chloride ions introduced into concrete from concrete surface by marine evironment was analysed. A mathematical model including the diffusion of chloride ion in aqueous phase of pores, the adsorption and desorption of chloride ions to and from the surface of solid phase of concrete and the chemical reactions of chloride ions with solid phase was presented. Finite element method was employed to carry out numerical analysis. The results of this study may be used to predict the onset of reinforcement corrosion and to identify the maximum limit of chloride ions contained in concrete admixtures.

  • PDF

The Preparation of PAN-based Activated Carbon Fiber by KOH (KOH 활성화에 의한 PAN계 활성탄소섬유의 제조)

  • 김기원;정승훈;임연수;정윤중
    • Journal of the Korean Ceramic Society
    • /
    • v.36 no.6
    • /
    • pp.577-582
    • /
    • 1999
  • Activated carbon fibers were prepared from stabilized PAN fibers by chemical activation using hydroxide. The variations in specific surface area amount of iodine adsorption micro-structure and pore size distribution in the activated carbon fibers after the activation process were discussed. In the chemical activation using potassium hydroxide specific surface area of about 2545m2/g and amount of iodine adsorption of 2049 mg/g were obtained at the condition of KOH/fiber ratio of 1 and 800$^{\circ}C$ Nitrogen adsorption isotherms for PAN based activated carbon fibers showed the type I in the Brunauer-Deming-Deming-Teller classification indicating the micro-pores consisting the activated fibers.

  • PDF

Burnability and Clinker Properties of Cement Raw Mixtures Used Limtestones in Samtaesan Formation (삼태산층 석회석을 사용한 시멘트 조합원료의 소성성과 클린커 성질에 관한 연구)

  • Choi, Long;Ahn, Young-Pil
    • Journal of the Korean Ceramic Society
    • /
    • v.19 no.1
    • /
    • pp.35-43
    • /
    • 1982
  • It was found that the burnability of raw mix and characteristics of clinker was affected by the difference in grades of limestones. The thermal decomposition temperature of raw mix which used low grade limestone was lower than that of high grade, and the fast formation of $C_2S$ was due to the rich content of calcite and quartz over critical grain size, which caused the bad effects in the burnability, but $C_3S$ was formed slowly. The structure of clinker had many pores, and the growth of clinker minerals was inferior.

  • PDF

Fabrication of Porous Alumina Ceramics Using Hollow Microspheres as the Pore-forming Agent

  • Nie, Zhengwei;Lin, Yuyi
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.24 no.4
    • /
    • pp.368-373
    • /
    • 2015
  • Porous alumina ceramics with two different pore sizes were fabricated using hollow microspheres as the pore-forming agent. The relative density, total porosity, and microstructure of the obtained alumina ceramics were studied. It was found that the total porosity of sintered samples with different amounts of hollow microsphere content, from 2.0 to 4.0 wt%, was 69.3-75.6%. The interconnected and spherical cell morphology was obtained with 3.0 wt% hollow microsphere content. The resulting ceramics consist of a hierarchical structure with large-sized cells, and small-sized pores in the cell walls. Moreover, the compressive strength of the sintered samples varied from 8.3-11.5 MPa, corresponding to hollow microsphere contents of 2.0-4.0 wt%.

The Properties of YMnO$_3$ ceramics (YMnO$_3$ 세라믹의 물리적 특성)

  • 김재윤;김부근;김강언;정수태
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 1998.10a
    • /
    • pp.267.1-270
    • /
    • 1998
  • We measured the dielectric properties with YMnO$_3$ ceramics using solution method based procedure via by citrate. The crystalline phases were determined using XRD. Also we observed morphologies of YMnO$_3$ ceramics using SEM. We proved the structure of YMnO$_3$ ceramics which is hexagonal. But lots of pores were observed the microstructure. It would be considered as volatile organic. The maximum density of YMn03 ceramics is obtained sintering temperature 135$0^{\circ}C$ and the ratio 0.95/1.05 of Y/Mn. But even though the density we obtained is the highest, that is lower than theoretical density because of remaining organics by citric acid. Dielectric constant and dissipation factor were improved as increasing sintering temperature and the Y/Mn ratio (0.95/1.05)

Modeling of sulfate ionic diffusion in porous cement based composites: effect of capillary size change

  • Gospodinov, Peter N.
    • Computers and Concrete
    • /
    • v.4 no.2
    • /
    • pp.157-166
    • /
    • 2007
  • The paper considers a theoretical model to study sulfate ion diffusion in saturated porous media - cement based mineral composites, accounting for simultaneous effects, such as filling micro-capillaries (pores) with ions and chemical products and liquid push out of them. Pore volume change and its effect on the distribution of ion concentration within the specimen are investigated. Relations for the distribution of the capillary relative radius and volume within the composite under consideration are found. The numerical algorithm used is further completed to consider capillary size change and the effects accompanying sulfate ion diffusion. Ion distribution within the cross section and volume of specimens fabricated from mineral composites is numerically studied, accounting for the change of material capillary size and volume. Characteristic cases of 2D and 3D diffusion are analyzed. The results found can be used to both assess the sulfate corrosion in saturated systems and predict changes occurring in the pore structure of the composite as a result of sulfate ion diffusion.