• Title/Summary/Keyword: pores structure

Search Result 516, Processing Time 0.029 seconds

Preparation and Optical Characterization of Mesoporous Silica Films with Different Pore Sizes

  • Bae, Jae-Young;Choi, Suk-Ho;Bae, Byeong-Soo
    • Bulletin of the Korean Chemical Society
    • /
    • v.27 no.10
    • /
    • pp.1562-1566
    • /
    • 2006
  • Mesoporous silica films with three different pore sizes were prepared by using cationic surfactant, non-ionic surfactant, or triblock copolymer as structure directing agents with tetramethylorthosilicate as silica source in order to control the pore size and wall thickness. They were synthesized by an evaporation-induced self-assembly process and spin-coated on Si wafer. Mesoporous silica films with three different pore sizes of 2.9, 4.6, and 6.6 nm and wall thickness ranging from $\sim$1 to $\sim$3 nm were prepared by using three different surfactants. These materials were optically transparent mesoporous silica films and crack free when thickness was less than 1 m m. The photoluminescence spectra found in the visible range were peaked at higher energy for smaller pore and thinner wall sized materials, consistent with the quantum confinement effect within the nano-sized walls of the silica pores.

Fast Fabrication of Nanoporous Anodic Alumina Membrane by Hard Anodization (하드애노디제이션에 의한 나노다공질 양극산화 알루미나 멤브레인의 제조)

  • Ha, Yoon-Cheol;Jeong, Dae-Yeong
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2009.06a
    • /
    • pp.429-429
    • /
    • 2009
  • Nanoporous anodic alumina membranes (NAAM) with high-density through-hole pores fabricated by hard anodization of aluminum in 0.3 M oxalic acid under the applied voltage of 40 (mild anodization), 80, 100, 120 and 140 V were investigated. The current-time responses monitored using a PC-controlled anodization cell and the corresponding pore structures attainable from field-enhanced scanning electron microscopy (FE-SEM) were analyzed in order to establish the optimum fabrication process. The nanoporous structure can be produced for all the voltage conditions, while the stabilized through-hole pore formation seems to occur at 40, 80 and 140 V. The growth rate under 140 V hard anodization was over 30 times higher than under 40 V mild anodization (1.5 um/hr).

  • PDF

Development of Ceramic Composite Membranes for Gas Separation: III. Examination of Membrane Characteristics by the Gas Permeation Model (기체분리용 세라믹 복합분리막의 개발: III. 기체투과 모델에 의한 막의 특성 규명)

  • 현상훈;윤성필;강범석
    • Journal of the Korean Ceramic Society
    • /
    • v.29 no.11
    • /
    • pp.905-911
    • /
    • 1992
  • Model equations for the gas permeation through a ceramic composite membrane were derived for examining the existence of crack, the reproducibility, and the microstructural properties of composite membranes. From the results of analyzing the nitrogen permeability data through alumina-tube supported TiO2 and SiO2 composite membranes, the extent of cracking, and the formation and structure of membrane top-layers were modelled. It was proved that the crack-free and reproducible composite membranes could be easily prepared only by the pore-filled coating within pores of the support in the sol-gel coating process.

  • PDF

Role of CaO in the Sintering of 12Ce-TZP Ceramics (12Ce-TZP 세라믹스의 소결에서의 CaO의 역할)

  • 박정현;문성환;박한수
    • Journal of the Korean Ceramic Society
    • /
    • v.29 no.4
    • /
    • pp.265-272
    • /
    • 1992
  • Role of CaO in the sintering of 12Ce-TZP ceramics was studied. The addition of small amounts of CaO increase the densification rate of 12Ce-TZP by altering lattice defect structure and the diffusion coefficient of the rate controlling species, namely cerium and zirconium cations. CaO also inhibits grain growth during sintering and allows the sintering process to proceed to theoretical density by maintaining a high diffusion flux of vacancies from the pores to the grain boundaries. The inhibition of grain growth is accomplished by the segregation of solute at the grain boundaries, causing a decrease in the grain boundary mobility. The segregation of calcium was revealed by AES study.

  • PDF

Synthesis of Stepped Carbon Nanotubes in Anodic Aluminum Oxide Templates (알루미나 형틀을 이용한 서로 다른 직경을 갖는 모양을 가진 탄소나노튜브의 합성)

  • Im Wan-soon;Cho You-suk;Choi Gu seok;Kim Dojin
    • Korean Journal of Materials Research
    • /
    • v.14 no.9
    • /
    • pp.664-669
    • /
    • 2004
  • Anodic aluminum oxide (AAO) with pores of various diameter, density, and thickness values was obtained through control of the anodization parameters including voltage, temperature, pore widening time, anodization time, etc. The pore diameter was controlled by a pore widening in an etchant, and alumina templates having stepped nano-channels were fabricated by repetition of anodization and pore widening processes. Stepped carbon nanotubes (CNTs) were then grown on the stepped AAO templates by pyrolysis of acetylene without using the catalyst. High-resolution transmission electron microscopy images revealed that CNTs have a multi-wall structure made of graphite flakes of several nm sizes. The current-voltage characteristic of the sloped and linear CNTs were also examined.

The Study on Properties of AAO(Anodic Aluminum Oxide) Structures with Hole Effect (Hole effect를 고려한 AAO(Anodic Aluminum Oxide) 구조물의 물성치에 대한 연구)

  • 고성현;이대웅;지상은;박현철;이건홍;황운봉
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.21 no.4
    • /
    • pp.186-193
    • /
    • 2004
  • Porous anodic alumina has been used widely for corrosion protection of aluminum surfaces or as dielectric material in micro-electronics applications. It exhibits a homogeneous morphology of parallel pores which can easily be controlled between 10 and 400nm. It has been applied as a template for fabrication of the nanometer-scale composite. In this study, mechanical properties of the AAO structures are measured by the nano indentation method. Nano indentation technique is one of the most effective methods to measure the mechanical properties of nano-structures. Basically, hardness and elastic modulus can be obtained by the nano-indentation. Using the nano-indentation method, we investigated the mechanical properties of the AAO structure with different size of nano-holes. In results, we find the hole effect that changes the mechanical properties as size of nano hole.

Synthesis and Characterization of Cu Nanowires Using Anodic Alumina Template Based Electrochemical Deposition Method (양극산화 알루미나 주형 기반의 전해 증착법을 이용한 구리 나노선의 합성 및 특성 연구)

  • Lee, Young-In;Choa, Yong-Ho
    • Journal of Powder Materials
    • /
    • v.19 no.5
    • /
    • pp.367-372
    • /
    • 2012
  • Single crystalline Cu nanowires with controlled diameters and aspect ratios have been synthesized using electrochemical deposition within confined nanochannels of a porous anodic aluminium oxide(AAO) template. The diameters of nano-sized cylindrical pores in AAO template were adjusted by controlling the anodization conditions. Cu nanowires with diameters of approximately 38, 99, 274 nm were synthesized by the electrodeposition using the AAO templates. The crystal structure, morphology and microstructure of the Cu nanowires were systematically investigated using XRD, FE-SEM, TEM and SAED. Investigation results revealed that the Cu nanowires had the controlled diameter, high aspect ratio and single crystalline nature.

The Mechanical Properties of High Strength Concrete in Massive Structures

  • Park, Ki-Bong
    • Architectural research
    • /
    • v.15 no.1
    • /
    • pp.53-58
    • /
    • 2013
  • High strength concrete is being used increasingly in mass structure projects. The purpose of this study is to investigate the influence of temperature during mixing, placing and curing on the strength development, hydration products and pore structures of high strength concrete in mass structures. The experiments were conducted with two different model walls, viz.: 1.5 m and 0.3 m under typical summer and winter weather conditions. The final part of this study deal with the clarification of the relationship between the long-term strength loss and the microstructure of the high strength concrete at high temperatures. Test results indicated that high elevated temperatures in mass concrete structures significantly accelerate the strength development of concrete at the early ages, while the long-term strength development is decreased. The long-term strength loss is caused by the decomposition of ettringite and increased the total porosity and amount of small pores.

Processing Methods for the Preparation of Porous Ceramics

  • Ahmad, Rizwan;Ha, Jang-Hoon;Song, In-Hyuck
    • Journal of Powder Materials
    • /
    • v.21 no.5
    • /
    • pp.389-398
    • /
    • 2014
  • Macroporous ceramics with tailored pore size and shape could be used for well-established and emerging applications, such as molten metal filtration, biomaterial, catalysis, thermal insulation, hot gas filtration and diesel particulate filters. In these applications, unique properties of porous materials were required which could be achieved through the incorporation of macro-pores into ceramics. In this article, we reviewed the main processing techniques which can be used for the fabrication of macroporous ceramics with tailored microstructure. Partial sintering, replica templates, sacrificial fugutives, and direct foaming techniques was described here and compared in terms of microstructures and mechanical properties that could be achieved. The main focus was given to the direct foaming technique which was simple and versatile approach that allowed the fabrication of macro-porous ceramics with tailored features and properties.

Heparin Release from Polyurethane Devices (폴리우레탄 디바이스로부터의 헤파린 방출)

  • Kim, Sung-Ho
    • Journal of Pharmaceutical Investigation
    • /
    • v.17 no.2
    • /
    • pp.75-78
    • /
    • 1987
  • The release rate of heparin from monolithic devices composed of raffinose, ${\beta}-cyclodextrin$, polyethylene oxide (Mw 20,000, PEO), and hydrophobic polyether urethane (biomer) was investigated. Water soluble raffinose, ${\beta}-cyclodextrin$, and PEO blended into the biomer provided a controlled release of heparin. The release rate of heparin could be controlled by the content of raffinose, ${\beta}-cyclodextrin$, and PEO in the devices. The mechanism of release rate increased by the raffinose, ${\beta}-cyclodextrin$, and PEO may result from the formation of channels and pores in the biomer matrices following the swelling and the change in the physical structure of polymer net work. Hydrophobic polyurethane containing raffinose, ${\beta}-cyclodextrin$, and PEO can provide a hydrophilic antithrombogenic material for prolonged release of heparin.

  • PDF