• Title/Summary/Keyword: pore-water

Search Result 1,903, Processing Time 0.024 seconds

Behavioral Characteristics and Safety Management Plan for Fill Dam During Water Level Fluctuation Using Numerical Analysis (수치해석을 이용한 수위변동시 필댐의 거동특성 및 안전관리방안)

  • Jung, Heedon;Kim, Yongseong;Lee, Moojae;Lee, Seungjoo;Tamang, Bibek;Heo, Joon;Ahn, Sungsoo
    • Journal of the Korean Geosynthetics Society
    • /
    • v.20 no.1
    • /
    • pp.45-55
    • /
    • 2021
  • In this study, the behavioral characteristics of the fill dam were analyzed during water level fluctuations through a numerical analysis model, and the reservoir safety management plan was prepared. The variation in plastic deviatoric strain, horizontal displacement, stress path, pore water pressure, etc., due to elevation of water level in the upper and lower sides of shell and core were analyzed using numerical analysis software, viz. GTS NX and LIQCA. The analysis results manifest that as the water level in the dam body increases rapidly, the pore water pressure and displacement also increase quickly. It was found that the elevation of the water level causes an increase in pore water pressure in the dam body as well as an increase in the saturation of the dam body and decreased effective stress. It is considered that this type of dam behavior can be the cause of the reduction of strength and stiffness of the dam. Also, it is assumed that the accumulated plastic deviatoric strain due to the deformation of the dam body caused by water infiltration causes an increase in displacement. Based on these experimental results and the results of analyses of the existing reservoir safety diagnosis techniques, an improvement plan for dam safety diagnosis and evaluation criteria was proposed, and these results can be used as primary data while revising dam safety diagnosis guidelines.

Effect of Foulant Characteristics on Membrane Fouling Index (오염물질의 특성이 막오염 지수에 미치는 영향)

  • Park, Chanhyuk;Kim, Hana;Hong, Seungkwan
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.19 no.6
    • /
    • pp.775-780
    • /
    • 2005
  • This study was performed to investigate the effect of foulant characteristics on Membrane fouling index such as Silt Density Index (SDI) and Modified Fouling Index (MFI). A linear relationship was found relating the fouling index (both SDI and MFI) on particle concentration, but fouling index values were nonlinearly (exponentially) with increasing organic concentration. When organic matter was the primary cause of fouling, the MFI was not accurately predicted due to internal fouling such as pore adsorption. The fouling index was determined mainly by particle characteristics when both particle and organic coexisted in the feed water. This observation was attributed to lessening of organic pore adsorption by particle cake layer formed on the membrane surface. Bench-scale actual fouling experiments demonstrated that permeate flux declines much faster with feed water containing particles than organic matters although fouling potential predicted by SDI values were identical, indicating that the accurate prediction of fouling potential requires the development of fouling index reflecting different foulant characteristics.

In-situ Monitoring of Matric Suctions in a Weathered Granite Soil Slope (풍화화강토 사면에서 강우로 인한 모관흡수력 변화에 대한 실험 연구)

  • 이인모;조우성;김영욱;성상규
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2002.03a
    • /
    • pp.509-516
    • /
    • 2002
  • Rainfall-induced landslides in a weathered granite soil slope have mostly relative shallow slip surfaces above the groundwater table The pore-water pressure of soil above the groundwater table is usually negative. This negative pore-water pressure(or matric suction) has been found to make a large contribution to the slope stability. Therefore, the variation of in-situ matric suction profiles with time in a soil slope should be understood. In this study, a field measurement program was carried out from June to August, 2001 to monitor in-situ matric suctions and volumetric water contents in a weathered granite soil slope. The influence of climatic conditions on the variation of in-situ matric suctions could be found to decrease rapidly with depth. It could be found that decrement of matric suction induced by precipitation is affected not only by the amount and duration of rainfalls but also by the initial matric suction just prior to rainstorms. The soil-water characteristic from the field monitoring tends toward the wetting path of SWCC obtained from the laboratory test.

  • PDF

Usable water production from coal seam gas water with a combination of pore control fiber filtration and reverse osmosis

  • Shin, Choon Hwan;Bae, Jun Seok
    • Environmental Engineering Research
    • /
    • v.23 no.2
    • /
    • pp.210-215
    • /
    • 2018
  • Coal seam gas (CSG) water, to be discharged, has been usually treated in reverse osmosis (RO) plants which require extensive and expensive pre-treatment. However, current low gas prices have been a great driver for relevant industries to seek for alternative cost-effective technologies in the aspect of its beneficial use and fit-for-purpose usable water production. In this paper, a combined system with a two-stage pore control fiber (PCF) filtration and a RO system was designed and tested for CSG water treatment. Also, a coagulation reactor was placed in front of the PCF to further enhance suspended solid removal. More than 99% of SS were removed through the PCF filtration while organic, total nitrogen and total phosphorous were mostly removed by the RO system. Especially along with a decrease in conductivity, the total dissolved solid derived from salts was mainly removed in the RO system. Having $OH^-$ undetected, $HCO_3{^-}$ was found to be a dominant compound and its removal efficiency was 97-98% after the RO treatment. And a Fe(III) type of Polytetsu, which was the first to be tested in this paper, was found to be a better option than a Al(III) type of Poly Aluminium Chloride due to its greater coagulation efficiency and applicability at a broader range of pH than the Al(III) type. In addition, there was no noticeable change in oxidation reduction potential, suggesting that an additional process is required to oxidize non-ionic organic carbons (detected as total organic carbon).

Development of a Method for Detecting Unstable Behaviors in Flume Tests using a Univariate Statistical Approach

  • Kim, Seul-Bi;Seo, Yong-Seok;Kim, Hyeong-Sin;Chae, Byung-Gon;Choi, Jung-Hae;Kim, Ji-Soo
    • The Journal of Engineering Geology
    • /
    • v.24 no.2
    • /
    • pp.191-199
    • /
    • 2014
  • We describe a method for detecting slope instability in flume tests using pore pressure and water content data in conjunction with a statistical control chart analysis. Specifically, we conducted univariate statistical analysis on x-MR control chart data (pore pressure and water content) collected at several points along the flume slope, which we separated into three parts: upper, middle, and lower. To assess our results in the context of landslide forecasting and warning systems, we applied control limit lines at $1{\sigma}$, $2{\sigma}$, and $3{\sigma}$ levels of uncertainty. In doing so, we observed that dispersion time varies depending on the control limit line used. Moreover, the detection of instabilities is highly dependent on the position and type of sensor. Our findings indicate that different characteristics of the data on various factors predict slope failure differently and these characteristics can be identified by univariate statistical analysis. Therefore, we suggest that a univariate statistical approach is an effective method for the early detection of slope instability.

Variation of the Electrical Resistivity with ion Components of Pore Water in the Sand (사질토 간극수의 이온 성분들에 따른 전기비저항값의 변화)

  • Yu, Chan;Yoon, Chun-Gyeong;Lee, Young-Nam;Lee, Yong-Gil
    • Journal of the Korean Geotechnical Society
    • /
    • v.15 no.1
    • /
    • pp.185-196
    • /
    • 1999
  • A laboratory experiment was performed to examine the relationship between resistivity and ionic components in the pore water of a sand by using soil resistivity test box and STING-Rl. The resistivity measurement was performed with the concentration changes of ionic components. Also, the resistivity change was evaluated for multiple components. The results showed that the resistivity of Arsenic was less than other heavy metals. In the case of complex components, resistivity ranges depended on the resistivity of components existed in the pore water.

  • PDF

Unsaturated Soil Mechanics for Slope Stability

  • Rahardjo, Harianto;Satyanaga, Alfrendo;Leong, Eng-Choon
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2007.09a
    • /
    • pp.481-501
    • /
    • 2007
  • Excessive rainfalls due to climatic changes can trigger an increase in rainfall-induced slope failures that pose real threats to both lives and properties. Many high slopes in residual soils could stand at a steep angle, but failed during or after rainfall. Commonly, these slopes have a deep groundwater table and negative pore-water pressures in the unsaturated zone above the groundwater table contribute to the shear strength of soil and consequently to factor of safety of the slope. Stability assessment of slope under rainfall requires information on rate of rainwater infiltration in the unsaturated zone and the resulting changes in pore-water pressure and shear strength of soil. This paper describes the application of unsaturated soil mechanics principles and theories in the assessment of rainfall effect on stability of slope through proper characterization of soil properties, measurement of negative pore-water pressures, seepage and slope stability analyses involving unsaturated and saturated soils. Factors controlling the rate of changes in factor of safety during rainfall and a preventive method to minimize infiltration are highlighted in this paper.

  • PDF

Liquid Phase Adsorption Properties of Organo Surfur Compounds on Cation Exchanged Natural Zeolites (陽이온 交換한 天然 제올라이트에 依한 有機黃化合物의 液相吸着 特性)

  • Kim, Jong-Taik;Heo, Nam-Ho
    • Journal of the Korean Chemical Society
    • /
    • v.28 no.3
    • /
    • pp.194-202
    • /
    • 1984
  • The adsorption properties of organo sulfur compounds on cation exchanged natural zeolites from n-heptane were investigated. The equilibrium adsorbed amounts were dependent upon the exchanged cation and the nature of organo sulfur compounds such as length, volume, electronical structure. The increasing orders of equilibrium adsorbed amounts were thiophene derivatives, disulfide, sulfide mercaptane and thiophene, benzothiaphene, dibenzothiophene. And $Co^{+2}$-zeolite was the most prominent adsorbant. Rate determining step of the adsorption at initial stage was intraparticle diffusion into the transitional pores of zeolite. These adsorption rates were dependent upon the bulkiness of adsorbate. Finally, preadsorbed water didn't affect these adsorption until the cation exchanged natural zeolite contained 2.26${\times}10^{-3}$ mol/g of water. It indicated that water preferentially occupied the micro pores of the cation exchanged natural zeolites.

  • PDF

The Relationships between Excess Pore Water Pressure and Strain in Normally Consolidated Saturated Clays During Undrained Shear (포화된 정친압밀점토의 비배수 전단중에 발생하는 과잉간극 수압과 변형의 관계)

  • 박정용;정인주
    • Geotechnical Engineering
    • /
    • v.2 no.1
    • /
    • pp.15-26
    • /
    • 1986
  • Consolidated undrained standard triaxial tests for two remoulded clays and one undisturbed clay were carried out in order to find out the relationship between excess pore water pressure and axial strain in mortally consolidatated saturated clays during undrained shear. Tests were performed with isotropically-normally consolidated specimens by strain controlled and stress controlled loading. As the result of this stud!'a hyperbolic function expressing the relationship between pore water pressure and strain was found out, and it showed the same form as the Kondner's hyperbolic function for stress·strain behaviour. Two parameters used for the function can be obtained by CU-triaxial test.

  • PDF

CHEMICAL COMPATIBILITY OF SOIL-BENTONITE CUT-OFF WALL FOR IN-SITU GEOENVIRONMENTAL CONTAINMENT

  • Inui, Toru;Takai, Atsushi;Katsumi, Takeshi;Kamon, Masashi;Araki, Susumu
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2010.09c
    • /
    • pp.135-139
    • /
    • 2010
  • A construction technique to install the soil-bentonite (SB) cut-off wall for in-situ geoenvironmental containment by employing the trench cutting and re-mixing deep wall method is first presented in this paper. The laboratory test results on the hydraulic barrier performance of SB in relation to the chemical compatibility are then discussed. Hydraulic conductivity tests using flexible-wall permeameters as well as swell tests were conducted for SB specimens exposed to various types and concentrations of chemicals (calcium chloride, heavy fuel oil, ethanol, and/or seawater) in the permeant and/or in the pore water of original soil. For the SB specimens in which the pore water of original soil did not contain such chemicals and thus the sufficient bentonite hydration occurred, k values were not significantly increased even when permeated with the relatively aggressive chemical solutions such as 1.0 mol/L $CaCl_2$ or 50%-concentration ethanol solution. In contrast, the SB specimens containing $CaCl_2$ in the pore water had the higher k values. The excellent linear correlation between log k and swelling pressure implies that the swelling pressure can be a good indicator for the hydraulic barrier performance of the SB.

  • PDF